We consider a simple setup with light squarks which is free from the gravitino and SUSY flavor problems. In our setup, a SUSY breaking sector is sequestered from the matter and gauge sectors, and it only couples to the Higgs sector directly with $mathcal{O}(100),$TeV gravitino. Resulting mass spectra of sfermions are split: the first and second generation sfermions are light as $mathcal{O}(1),$TeV while the third generation sfermions are heavy as $mathcal{O}(10),$TeV. The light squarks of $mathcal{O}(1),$TeV can be searched at the (high-luminosity) LHC and future collider experiments. Our scenario can naturally avoid too large flavor-changing neutral currents and it is consistent with the $epsilon_K$ constraint. Moreover, there are regions explaining the muon $g-2$ anomaly and bottom-tau/top-bottom-tau Yukawa coupling unification simultaneously.