Do you want to publish a course? Click here

Some binomial formulas for non-commuting operators

148   0   0.0 ( 0 )
 Added by Peter Kuchment
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $D$ and $U$ be linear operators in a vector space (or more generally, elements of an associative algebra with a unit). We establish binomial-type identities for $D$ and $U$ assuming that either their commutator $[D,U]$ or the second commutator $[D,[D,U]]$ is proportional to $U$. Operators $D=d/dx$ (differentiation) and $U$- multiplication by $e^{lambda x}$ or by $sin lambda x$ are basic examples, for which some of these relations appeared unexpectedly as byproducts of an authors previous medical imaging research.



rate research

Read More

The aim of this work is to demonstrate various an interesting recursion formulas, differential and integral operators, integration formulas, and infinite summation for each of Horns hypergeometric functions $mathrm{H}_{1}$, $mathrm{H}_{2}$, $mathrm{H}_{3}$, $mathrm{H}_{4}$, $mathrm{H}_{5}$, $mathrm{H}_{6}$ and $mathrm{H}_{7}$ by the contiguous relations of Horns hypergeometric series. Some interesting different cases of our main consequences are additionally constructed.
105 - Shingo Takeuchi 2019
In this paper we will establish some double-angle formulas related to the inverse function of $int_0^x dt/sqrt{1-t^6}$. This function appears in Ramanujans Notebooks and is regarded as a generalized version of the lemniscate function.
We review previous work on spectral flow in connection with certain self-adjoint model operators ${A(t)}_{tin mathbb{R}}$ on a Hilbert space $mathcal{H}$, joining endpoints $A_pm$, and the index of the operator $D_{A}^{}= (d/d t) + A$ acting in $L^2(mathbb{R}; mathcal{H})$, where $A$ denotes the operator of multiplication $(A f)(t) = A(t)f(t)$. In this article we review what is known when these operators have some essential spectrum and describe some new results in terms of associated spectral shift functions. We are especially interested in extensions to non-Fredholm situations, replacing the Fredholm index by the Witten index, and use a particular $(1+1)$-dimensional model setup to illustrate our approach based on spectral shift functions.
110 - C. Calderon , M. M. Castro 2021
We give some structural formulas for the family of matrix-valued orthogonal polynomials of size $2times 2$ introduced by C. Calderon et al. in arXiv:1810.08560, which are common eigenfunctions of a differential operator of hypergeometric type. Specifically, we give a Rodrigues formula that allows us to write this family of polynomials explicitly in terms of the classical Jacobi polynomials, and write, for the sequence of orthonormal polynomials, the three term recurrence relation and the Christoffel-Darboux identity. We obtain a Pearson equation, which enables us to prove that the sequence of derivatives of the orthogonal polynomials is also orthogonal, and to compute a Rodrigues formula for these polynomials as well as a matrix-valued differential operator having these polynomials as eigenfunctions. We also describe the algebra of second order differential operators associated with the weight matrix.
We classify all fusion categories for a given set of fusion rules with three simple object types. If a conjecture of Ostrik is true, our classification completes the classification of fusion categories with three simple object types. To facilitate the discussion we describe a convenient, concrete and useful variation of graphical calculus for fusion categories, discuss pivotality and sphericity in this framework, and give a short and elementary re-proof of the fact that the quadruple dual functor is naturally isomorphic to the identity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا