No Arabic abstract
The determination of the CP nature of the top quark Yukawa coupling is addressed in this phenomenological work, using $tbar{t}h$ events at the $sqrt{s}$ = 13 TeV LHC, with $hrightarrow bbar b$ and through the dilepton decay channel of $tbar{t}$. Signal events were generated for pure $CP$-even, pure $CP$-odd and mixed-$CP$ coupling scenarios. Standard Model (SM) backgrounds were also considered. Angular distributions and asymmetries were studied and found to be potentially good probes to the $CP$ nature of the coupling, even after detector simulation and full event reconstruction using a kinematic fit. Expected limits to the $tbar th$ production cross-section times branching ratio were obtained for a range of top quark Yukawa $CP$-mixing angles and for different integrated luminosities of the LHC.
The CP nature of the Higgs coupling to top quarks is addressed in this paper, in single charged lepton final states of $tbar{t}h$ events produced in proton-proton collisions at the LHC. Pure scalar ($h=H$) and pseudo-scalar ($h=A$) Higgs boson signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed using a kinematic fit. Angular distributions of the decay products, as well as CP-sensitive asymmetries, are exploited to separate and gain sensitivity to possible pseudo-scalar components of the Higgs boson and reduce the contribution from the dominant irreducible background $tbar{t}bbar{b}$. Significant differences are found between the pure CP-even and -odd signal hypotheses as well as with respect to the Standard Model background, in particular the $tbar{t} bbar{b}$ contribution. Such differences survive the event reconstruction, allowing to define optimal observables to extract the Higgs couplings parameters from a global fit. A dedicated analysis is applied to efficiently identify signal events and reject as much as possible the expected Standard Model background. The results obtained are compared with a similar analysis in the dilepton channel. We show that the single lepton channel is more promising overall and can be used in combination to study the CP nature of the Higgs coupling to top quarks.
The recently discovered scalar resonance at the LHC is now almost confirmed to be a Higgs Boson, whose CP properties are yet to be established. At the ILC with and without polarized beams, it may be possible to probe these properties at high precision. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process $e^+ e^- to t bar{t} Phi$, with $Phi$ mainly decaying into a $bbar b$ pair. We have compared the case of a minimal extension of the SM case (Model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating Two-Higgs Doublet Model (Model II) that permits a more general description of the couplings. We have considered the ILC with $sqrt{s}=800$,GeV and integrated luminosity of $300, {rm fb}^{-1}$. Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in Model II, while it is difficult to probe these departures in Model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increases the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the SM.
We study effects of CP violation in the associated production of a charged Higgs boson and a top quark at the LHC, $pp to tH^pm + X$. We calculate the CP violating asymmetry between the total cross section for $H^+$ and $H^-$ production at next-to-leading order in the MSSM, and perform a detailed numerical analysis. In the production the asymmetry is of the order of 20%. The asymmetry in the production and any subsequent decay of an on-shell charged Higgs boson is to a good approximation the sum of the asymmetry in the production and the asymmetry in the decay. We consider subsequent decays of $H^pm $ to $t b$, $ u_tau tau^pm$ and $W h^0$. In the case with $H^pm to t b$ decay, mainly due to CP violating box graphs with gluino, the asymmetry can go up to $sim$ 12%.
A feasibility study for an experimental analysis searching for $tbar{t}H(Hrightarrow bbar{b})$ production at the LHC and its high luminosity phase is presented in this note. Unlike search strategies currently being used in experimental collaborations, the present analysis exploits jet substructure techniques and focuses on the reconstruction of boosted Higgs bosons, to obtain sensitivity to the signal in a simple cut-based analysis. The $tbar{t} +$ jets background may be constrained in the proposed analysis through a control region with very small signal contamination. Using this analysis strategy, the $tbar{t}H(Hrightarrow bbar{b})$ process could be observed at the LHC, in the semi-leptonic channel alone, with a significance of $5.41pm 0.12$ for $mathcal{L}=300,mbox{fb}^{-1}$. For the same integrated luminosity, in the High Luminosity LHC scenario with an upgraded detector, a significance of $6.13pm 0.11$ may be obtained. The top Yukawa coupling could be measured with a 35% uncertainty using $mathcal{L}=300,mbox{fb}^{-1}$ of LHC data and of 17% at the HL-LHC scenario with $mathcal{L}=3000,mbox{fb}^{-1}$. In the same luminosity scenarios, the signal strength is equally expected to have a 18$%$ and 5$%$ uncertainty, respectively. Finally, it was found that re-clustered jets may be used without loss of efficiency.
With the goal of increasing the precision of NLO QCD predictions for the $ppto tbar{t} gamma$ process in the di-lepton top quark decay channel we present theoretical predictions for the ${cal R}= sigma_{tbar{t}gamma}/sigma_{tbar{t}}$ cross section ratio. Results for the latter together with various differential cross section ratios are given for the LHC with the Run II energy of $sqrt{s} = 13$ TeV. Fully realistic NLO computations for $tbar{t}$ and $tbar{t}gamma$ production are employed. They are based on matrix elements for $e^+ u_e mu^- bar{ u}_mu bbar{b}$ and $e^+ u_e mu^- bar{ u}_mu bbar{b}gamma$ processes and include all resonant and non-resonant diagrams, interferences, and off-shell effects of the top quarks and the $W$ gauge bosons. Various renormalisation and factorisation scale choices and parton density functions are examined to assess their impact on the cross section ratio. Depending on the transverse momentum cut on the hard photon a judicious choice of a dynamical scale allows us to obtain $1%-3%$ percent precision on ${cal R}$. Moreover, for differential cross section ratios theoretical uncertainties in the range of $1%-6%$ have been estimated. Until now such high precision predictions have only been reserved for the top quark pair production at NNLO QCD. Thus, ${cal R}$ at NLO in QCD represents a very precise observable to be measured at the LHC for example to study the top quark charge asymmetry or to probe the strength and the structure of the $t$-$bar{t}$-$gamma$ vertex. The latter can shed some light on possible new physics that can reveal itself only once sufficiently precise theoretical predictions are available.