Do you want to publish a course? Click here

Ultimate confinement of phonon propagation in silicon nano-crystalline structure

58   0   0.0 ( 0 )
 Added by Junichiro Shiomi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Temperature-dependent thermal conductivity of epitaxial silicon nano-crystalline (SiNC) structures composed of nanometer-sized grains separated by ultra-thin silicon-oxide (SiO2) films is measured by the time domain thermoreflectance technique in the range from 50 to 300 K. Thermal conductivity of SiNC structures with grain size of 3 nm and 5 nm is anomalously low at the entire temperature range, significantly below the values of bulk amorphous Si and SiO2. Phonon gas kinetics model, with intrinsic transport properties obtained by first-principles-based anharmonic lattice dynamics and phonon transmittance across ultra-thin SiO2 films obtained by atomistic Greens function, reproduces the measured thermal conductivity without any fitting parameters. The analysis reveals that mean free paths of acoustic phonons in the SiNC structures are equivalent or even below half the phonon wavelength, i.e. the minimum thermal conductivity scenario. The result demonstrates that the nanostructures with extremely small length scales and controlled interface can give rise to ultimate classical confinement of thermal phonon propagation.



rate research

Read More

247 - Dengke Ma , Hongru Ding , Han Meng 2015
Wave effects of phonons can give rise to controllability of heat conduction beyond that by particle scattering at surfaces and interfaces. In this work, we propose a new class of 3D nanostructure: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions (NCJs). We perform equilibrium molecular dynamics (MD) simulations, and find an ultralow value of thermal conductivity of SiNWC, 0.173 Wm-1K-1, which is one order lower than that of SiNWs. By further modal analysis and atomistic Greens function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNWs network.
Resonant Raman spectroscopy is realized on closely spaced nanowire based quantum wells. Phonon quantization consistent with 2.4 nm thick quantum wells is observed, in agreement with cross-section transmission electron microscopy measurements and photoluminescence experiments. The creation of a high density plasma within the quantized structures is demonstrated by the observation of coupled plasmon-phonon modes. The density of the plasma and thereby the plasmon-phonon interaction is controlled with the excitation power. This work represents a base for further studies on confined high density charge systems in nanowires.
The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing and nanoscale lasers. While plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the lengthscale of one atom. This is achieved by far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric h-BN spacer between graphene and metal rods. A theoretical model which takes into account the non-local optical response of both graphene and metal is used to describe the results. These ultra-confined plasmonic modes, addressed with far-field light excitation, enables a route to new regimes of ultra-strong light-matter interactions.
Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. Modification of acoustic phonon spectrum in structures with periodically modulated elastic constant or mass density - referred to as phononic crystals - has been proven experimentally and utilized in practical applications. A possibility of modifying acoustic phonon spectrum in individual nanostructures via spatial confinement would bring tremendous benefits for controlling phonon-electron interaction and thermal conduction at nanoscale. However, despite strong scientific and practical importance, conclusive experimental evidence of acoustic phonon confinement in individual free-standing nanostructures, e.g. nanowires, is still missing. The length scale, at which phonon dispersion undergoes changes and a possibility of the phonon group velocity reduction, are debated. Here, we utilize specially designed high-quality GaAs nanowires (NWs) with different diameters, D, and large inter-nanowire distances to directly demonstrate acoustic phonon confinement. The measurements conducted with Brillouin - Mandelstam spectroscopy reveal confined phonon polarization branches with frequencies from 4 GHz to 40 GHz in NWs with D as large as ~128 nm, i.e. at length scale, which exceeds the grey phonon mean-free path in GaAs by an almost an order of magnitude. The phonon dispersion modification and phonon energy scaling with D in individual nanowires are in excellent agreement with theory. The obtained results can lead to more efficient nanoscale control of acoustic phonons, with benefits for nanoelectronics, thermoelectric energy conversion, thermal management, and novel spintronic technologies.
Adiabatic shuttling of single impurity bound electrons to gate induced surface states in semiconductors has attracted much attention in recent times, mostly in the context of solid-state quantum computer architecture. A recent transport spectroscopy experiment for the first time was able to probe the Stark shifted spectrum of a single donor in silicon buried close to a gate. Here we present the full theoretical model involving large-scale quantum mechanical simulations that was used to compute the Stark shifted donor states in order to interpret the experimental data. Use of atomistic tight-binding technique on a domain of over a million atoms helped not only to incorporate the full band structure of the host, but also to treat realistic device geometries and donor models, and to use a large enough basis set to capture any number of donor states. The method yields a quantitative description of the symmetry transition that the donor electron undergoes from a 3D Coulomb confined state to a 2D surface state as the electric field is ramped up adiabatically. In the intermediate field regime, the electron resides in a superposition between the states of the atomic donor potential and that of the quantum dot like states at the surface. In addition to determining the effect of field and donor depth on the electronic structure, the model also provides a basis to distinguish between a phosphorus and an arsenic donor based on their Stark signature. The method also captures valley-orbit splitting in both the donor well and the interface well, a quantity critical to silicon qubits. The work concludes with a detailed analysis of the effects of screening on the donor spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا