Do you want to publish a course? Click here

The Control Toolbox - An Open-Source C++ Library for Robotics, Optimal and Model Predictive Control

230   0   0.0 ( 0 )
 Added by Markus Giftthaler
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We introduce the Control Toolbox (CT), an open-source C++ library for efficient modeling, control, estimation, trajectory optimization and Model Predictive Control. The CT is applicable to a broad class of dynamic systems but features interfaces to modeling tools specifically designed for robotic applications. This paper outlines the general concept of the toolbox, its main building blocks, and highlights selected application examples. The library contains several tools to design and evaluate controllers, model dynamical systems and solve optimal control problems. The CT was designed for intuitive modeling of systems governed by ordinary differential or difference equations. It supports rapid prototyping of cost functions and constraints and provides standard interfaces for different optimal control solvers. To date, we support Single Shooting, the iterative Linear-Quadratic Regulator, Gauss-Newton Multiple Shooting and classical Direct Multiple Shooting. We provide interfaces to general purpose NLP solvers and Riccati-based linear-quadratic optimal control solvers. The CT was designed to solve large-scale optimal control and estimation problems efficiently and allows for online control of dynamic systems. Some of the key features to enable fast run-time performance are full compatibility with Automatic Differentiation, derivative code generation, and multi-threading. Still, the CT is designed as a modular framework whose building blocks can also be used for other control and estimation applications such as inverse dynamics control, extended Kalman filters or kinematic planning.



rate research

Read More

Many robotics domains use some form of nonconvex model predictive control (MPC) for planning, which sets a reduced time horizon, performs trajectory optimization, and replans at every step. The actual task typically requires a much longer horizon than is computationally tractable, and is specified via a cost function that cumulates over that full horizon. For instance, an autonomous car may have a cost function that makes a desired trade-off between efficiency, safety, and obeying traffic laws. In this work, we challenge the common assumption that the cost we optimize using MPC should be the same as the ground truth cost for the task (plus a terminal cost). MPC solvers can suffer from short planning horizons, local optima, incorrect dynamics models, and, importantly, fail to account for future replanning ability. Thus, we propose that in many tasks it could be beneficial to purposefully choose a different cost function for MPC to optimize: one that results in the MPC rollout having low ground truth cost, rather than the MPC planned trajectory. We formalize this as an optimal cost design problem, and propose a zeroth-order optimization-based approach that enables us to design optimal costs for an MPC planning robot in continuous MDPs. We test our approach in an autonomous driving domain where we find costs different from the ground truth that implicitly compensate for replanning, short horizon, incorrect dynamics models, and local minima issues. As an example, the learned cost incentivizes MPC to delay its decision until later, implicitly accounting for the fact that it will get more information in the future and be able to make a better decision. Code and videos available at https://sites.google.com/berkeley.edu/ocd-mpc/.
We introduce Crocoddyl (Contact RObot COntrol by Differential DYnamic Library), an open-source framework tailored for efficient multi-contact optimal control. Crocoddyl efficiently computes the state trajectory and the control policy for a given predefined sequence of contacts. Its efficiency is due to the use of sparse analytical derivatives, exploitation of the problem structure, and data sharing. It employs differential geometry to properly describe the state of any geometrical system, e.g. floating-base systems. Additionally, we propose a novel optimal control algorithm called Feasibility-driven Differential Dynamic Programming (FDDP). Our method does not add extra decision variables which often increases the computation time per iteration due to factorization. FDDP shows a greater globalization strategy compared to classical Differential Dynamic Programming (DDP) algorithms. Concretely, we propose two modifications to the classical DDP algorithm. First, the backward pass accepts infeasible state-control trajectories. Second, the rollout keeps the gaps open during the early exploratory iterations (as expected in multiple-shooting methods with only equality constraints). We showcase the performance of our framework using different tasks. With our method, we can compute highly-dynamic maneuvers (e.g. jumping, front-flip) within few milliseconds.
We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.
Decision making under uncertainty is critical to real-world, autonomous systems. Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex probability distributions. In this paper, we propose a generalization of MPC that represents a multitude of solutions as posterior distributions. By casting MPC as a Bayesian inference problem, we employ variational methods for posterior computation, naturally encoding the complexity and multi-modality of the decision making problem. We present a Stein variational gradient descent method to estimate the posterior directly over control parameters, given a cost function and observed state trajectories. We show that this framework leads to successful planning in challenging, non-convex optimal control problems.
Correlated with the trend of increasing degrees of freedom in robotic systems is a similar trend of rising interest in Spatio-Temporal systems described by Partial Differential Equations (PDEs) among the robotics and control communities. These systems often exhibit dramatic under-actuation, high dimensionality, bifurcations, and multimodal instabilities. Their control represents many of the current-day challenges facing the robotics and automation communities. Not only are these systems challenging to control, but the design of their actuation is an NP-hard problem on its own. Recent methods either discretize the space before optimization, or apply tools from linear systems theory under restrictive linearity assumptions in order to arrive at a control solution. This manuscript provides a novel sampling-based stochastic optimization framework based entirely in Hilbert spaces suitable for the general class of textit{semi-linear} SPDEs which describes many systems in robotics and applied physics. This framework is utilized for simultaneous policy optimization and actuator co-design optimization. The resulting algorithm is based on variational optimization, and performs joint episodic optimization of the feedback control law and the actuation design over episodes. We study first and second order systems, and in doing so, extend several results to the case of second order SPDEs. Finally, we demonstrate the efficacy of the proposed approach with several simulated experiments on a variety of SPDEs in robotics and applied physics including an infinite degree-of-freedom soft robotic manipulator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا