Do you want to publish a course? Click here

Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories

224   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent $z$ and hyperscaling violating parameter $theta$. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for $z>1$. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity $rho sim T$ corresponds to $z=4/3$.



rate research

Read More

93 - Andreas Karch 2014
We show that many results about holographic conductivities in geometries with hyperscaling violating scaling can be reproduced from simple scaling laws in the dual field theory. We show that the electro-magnetic response of probe branes in these systems require at least one additional scaling parameter Phi beyond the usual dynamical exponent z and hyperscaling violating exponent theta, as also pointed out in earlier work. We show that the scaling exponents can be chosen in such a way that the temperature dependence of DC conductivity and Hall angle in strange metals can be reproduced.
We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in arXiv:1604.05092 [hep-th]. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son and Starinets for shear gravitational perturbations in the near horizon region given certain self-consistent approximations, leading to the shear diffusion constant on an appropriately defined stretched horizon. In theories containing a gauge field, some of the metric perturbations mix with some of the gauge field perturbations and the above analysis is somewhat more complicated. We find a similar near-horizon analysis can be obtained in terms of new field variables involving a linear combination of the metric and the gauge field perturbation resulting in a corresponding diffusion equation. Thereby as before, for theories with Lifshitz and hyperscaling violating exponents $z, theta$ satisfying $z<4-theta$ in four bulk dimensions, our analysis here results in a similar expression for the shear diffusion constant with power-law scaling with temperature suggesting universal behaviour in relation to the viscosity bound. For $z=4-theta$, we find logarithmic behaviour.
A Vaidya type geometry describing gravitation collapse in asymptotically Lifshitz spacetime with hyperscaling violation provides a simple holographic model for thermalization near a quantum critical point with non-trivial dynamic and hyperscaling violation exponents. The allowed parameter regions are constrained by requiring that the matter energy momentum tensor satisfies the null energy condition. We present a combination of analytic and numerical results on the time evolution of holographic entanglement entropy in such backgrounds for different shaped boundary regions and study various scaling regimes, generalizing previous work by Liu and Suh.
We discuss and compute entanglement entropy (EE) in (1+1)-dimensional free Lifshitz scalar field theories with arbitrary dynamical exponents. We consider both the subinterval and periodic sublattices in the discretized theory as subsystems. In both cases, we are able to analytically demonstrate that the EE grows linearly as a function of the dynamical exponent. Furthermore, for the subinterval case, we determine that as the dynamical exponent increases, there is a crossover from an area law to a volume law. Lastly, we deform Lifshitz field theories with certain relevant operators and show that the EE decreases from the ultraviolet to the infrared fixed point, giving evidence for a possible c-theorem for deformed Lifshitz theories.
In this paper, we analyze the fermionic Casimir effects associated with a massless quantum field in the context of Lorentz symmetry violation approach based on Horava-Lifshitz methodology. In order to obtain these observables, we impose the standard MIT bag boundary condition on the fields on two large and parallel plates. Our main objectives are to investigate how the Casimir energy and pressure depend on the parameter associated with the breaking of Lorentz symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا