Do you want to publish a course? Click here

The detection of the blazar S4 0954+65 at very-high-energy with the MAGIC telescopes during an exceptionally high optical state

146   0   0.0 ( 0 )
 Added by Giovanna Pedaletti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The very-high-energy (VHE, $gtrsim 100$ GeV) $gamma$-ray MAGIC observations of the blazar S4 0954+65, were triggered by an exceptionally high flux state of emission in the optical. This blazar has a disputed redshift of z=0.368 or z$geqslant$0.45 and an uncertain classification among blazar subclasses. The exceptional source state described here makes for an excellent opportunity to understand physical processes in the jet of S4 0954+65 and thus contribute to its classification. We investigate the multiwavelength (MWL) light curve and spectral energy distribution (SED) of the S4 0954+65 blazar during an enhanced state in February 2015 and put it in context with possible emission scenarios. We collect photometric data in radio, optical, X-ray, and $gamma$ ray. We study both the optical polarization and the inner parsec-scale jet behavior with 43 GHz data. Observations with the MAGIC telescopes led to the first detection of S4 0954+65 at VHE. Simultaneous data with Fermi-LAT at high energy $gamma$ ray (HE, 100 MeV < E < 100 GeV) also show a period of increased activity. Imaging at 43 GHz reveals the emergence of a new feature in the radio jet in coincidence with the VHE flare. Simultaneous monitoring of the optical polarization angle reveals a rotation of approximately 100$^circ$. (...) The broadband spectrum can be modeled with an emission mechanism commonly invoked for flat spectrum radio quasars, i.e. inverse Compton scattering on an external soft photon field from the dust torus, also known as external Compton. The light curve and SED phenomenology is consistent with an interpretation of a blob propagating through a helical structured magnetic field and eventually crossing a standing shock in the jet, a scenario typically applied to flat spectrum radio quasars (FSRQs) and low-frequency peaked BL Lac objects (LBL).



rate research

Read More

We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, $E>$ 100 GeV) blazar S4 0954+65 ($z=0.368$) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE $gamma$-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of $1.8 pm 0.1$---compared with the 3FGL value (averaged over four years of observation) of $2.34 pm 0.04$. In contrast, Swift/XRT data showed a softening of the X-ray spectrum, with a photon index of $1.72 pm 0.08$ (compared with $1.38 pm 0.03$ averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous ($<1$ day) broadband spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of $gtrsim 1.0 times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$ ($E>$ 100 MeV) and a hard spectral index of $Gamma_{rm GeV} < 2.0$ detected by Fermi-LAT on daily time scales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.
Fast radio bursts (FRBs) are bright flashes observed typically at GHz frequencies with millisecond duration, whose origin is likely extragalactic. Their nature remains mysterious, motivating searches for counterparts at other wavelengths. FRB 121102 is so far the only source known to repeatedly emit FRBs and is associated with a host galaxy at redshift $z simeq 0.193$. We conducted simultaneous observations of FRB 121102 with the Arecibo and MAGIC telescopes during several epochs in 2016--2017. This allowed searches for millisecond-timescale burst emission in very-high-energy (VHE) gamma rays as well as the optical band. While a total of five FRBs were detected during these observations, no VHE emission was detected, neither of a persistent nature nor burst-like associated with the FRBs. The average integral flux upper limits above 100 GeV at 95% confidence level are $6.6 times 10^{-12}~mathrm{photons cm^{-2} s^{-1}}$ (corresponding to luminosity $L_{rm VHE} lesssim 10^{45}~mathrm{erg s^{-1}}$) over the entire observation period, and $1.2 times 10^{-7}~ mathrm{photons cm^{-2} s^{-1}}$ ($L_{rm VHE} lesssim 10^{49}~mathrm{erg s^{-1}}$) over the total duration of the five FRBs. We constrain the optical U-band flux to be below 8.6 mJy at 5-$sigma$ level for 1-ms intervals around the FRB arrival times. A bright burst with U-band flux $29~mathrm{mJy}$ and duration $sim 12$ ms was detected 4.3 s before the arrival of one FRB. However, the probability of spuriously detecting such a signal within the sampled time space is 1.5% (2.2 $sigma$, post-trial), i.e. consistent with the expected background. We discuss the implications of the obtained upper limits for constraining FRB models.
Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7pm0.5). No significant short-term variability was found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.
Extreme high-energy peaked BL Lac objects (EHBLs) are a new emerging class of blazars. The typical two-hump structured spectral energy distribution (SED) is shifted to higher energies with respect to other more established classes of blazars. Multi-wavelength observations allow us to constrain their synchrotron peak in the medium and hard X-ray bands. Their gamma-ray emission dominates above the GeV gamma-ray band, and in some objects it extends up to several TeV (e.g. 1ES 0229+200). Their hard TeV spectrum is also interesting for the implications on the extragalactic background light indirect measurements, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. Up to now, only a few objects have been studied in the TeV gamma-ray range. In this contribution, we will present the new detection of the EHBL object PGC 2402248, recently discovered in TeV gamma rays with the MAGIC telescopes. The analysis results of a set of multi-wavelength simultaneous observations up to the VHE gamma-ray band provide the broad-band SED of the blazar, which will be used to probe different emission models. Given the extreme characteristics of this blazar, constraints on the physical parameters within the framework of leptonic and hadronic models are derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا