Do you want to publish a course? Click here

Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

122   0   0.0 ( 0 )
 Added by SyuSiang Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data.



rate research

Read More

In this paper, we propose a model to perform speech dereverberation by estimating its spectral magnitude from the reverberant counterpart. Our models are capable of extracting features that take into account both short and long-term dependencies in the signal through a convolutional encoder (which extracts features from a short, bounded context of frames) and a recurrent neural network for extracting long-term information. Our model outperforms a recently proposed model that uses different context information depending on the reverberation time, without requiring any sort of additional input, yielding improvements of up to 0.4 on PESQ, 0.3 on STOI, and 1.0 on POLQA relative to reverberant speech. We also show our model is able to generalize to real room impulse responses even when only trained with simulated room impulse responses, different speakers, and high reverberation times. Lastly, listening tests show the proposed method outperforming benchmark models in reduction of perceived reverberation.
331 - Yihui Fu , Jian Wu , Yanxin Hu 2020
In this paper, we propose a multi-channel network for simultaneous speech dereverberation, enhancement and separation (DESNet). To enable gradient propagation and joint optimization, we adopt the attentional selection mechanism of the multi-channel features, which is originally proposed in end-to-end unmixing, fixed-beamforming and extraction (E2E-UFE) structure. Furthermore, the novel deep complex convolutional recurrent network (DCCRN) is used as the structure of the speech unmixing and the neural network based weighted prediction error (WPE) is cascaded beforehand for speech dereverberation. We also introduce the staged SNR strategy and symphonic loss for the training of the network to further improve the final performance. Experiments show that in non-dereverberated case, the proposed DESNet outperforms DCCRN and most state-of-the-art structures in speech enhancement and separation, while in dereverberated scenario, DESNet also shows improvements over the cascaded WPE-DCCRN networks.
In this paper, we present a method called HODGEPODGEfootnotemark[1] for large-scale detection of sound events using weakly labeled, synthetic, and unlabeled data proposed in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 challenge Task 4: Sound event detection in domestic environments. To perform this task, we adopted the convolutional recurrent neural networks (CRNN) as our backbone network. In order to deal with a small amount of tagged data and a large amounts of unlabeled in-domain data, we aim to focus primarily on how to apply semi-supervise learning methods efficiently to make full use of limited data. Three semi-supervised learning principles have been used in our system, including: 1) Consistency regularization applies data augmentation; 2) MixUp regularizer requiring that the predictions for a interpolation of two inputs is close to the interpolation of the prediction for each individual input; 3) MixUp regularization applies to interpolation between data augmentations. We also tried an ensemble of various models, which are trained by using different semi-supervised learning principles. Our proposed approach significantly improved the performance of the baseline, achieving the event-based f-measure of 42.0% compared to 25.8% event-based f-measure of the baseline in the provided official evaluation dataset. Our submissions ranked third among 18 teams in the task 4.
343 - Ke Wang , Junbo Zhang , Sining Sun 2018
We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks of a work to examine their ability in speech dereverberation and the advantages of using GANs have not been fully established. In this paper, we provide deep investigations in the use of GAN-based dereverberation front-end in ASR. First, we study the effectiveness of different dereverberation networks (the generator in GAN) and find that LSTM leads a significant improvement as compared with feed-forward DNN and CNN in our dataset. Second, further adding residual connections in the deep LSTMs can boost the performance as well. Finally, we find that, for the success of GAN, it is important to update the generator and the discriminator using the same mini-batch data during training. Moreover, using reverberant spectrogram as a condition to discriminator, as suggested in previous studies, may degrade the performance. In summary, our GAN-based dereverberation front-end achieves 14%-19% relative CER reduction as compared to the baseline DNN dereverberation network when tested on a strong multi-condition training acoustic model.
Speech separation is an important problem in speech processing, which targets to separate and generate clean speech from a mixed audio containing speech from different speakers. Empowered by the deep learning technologies over sequence-to-sequence domain, recent neural speech separation models are now capable of generating highly clean speech audios. To make these models more practical by reducing the model size and inference time while maintaining high separation quality, we propose a new transformer-based speech separation approach, called TransMask. By fully un-leashing the power of self-attention on long-term dependency exception, we demonstrate the size of TransMask is more than 60% smaller and the inference is more than 2 times faster than state-of-the-art solutions. TransMask fully utilizes the parallelism during inference, and achieves nearly linear inference time within reasonable input audio lengths. It also outperforms existing solutions on output speech audio quality, achieving SDR above 16 over Librimix benchmark.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا