Do you want to publish a course? Click here

Jeans that fit: weighing the mass of the Milky Way analogues in the $Lambda{rm CDM}$ universe

110   0   0.0 ( 0 )
 Added by Prajwal Kafle Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spherical Jeans equation is a widely used tool for dynamical study of gravitating systems in astronomy. Here we test its efficacy in robustly weighing the mass of Milky Way analogues, given they need not be in equilibrium or even spherical. Utilizing Milky Way stellar halos simulated in accordance with $Lambda{rm CDM}$ cosmology by Bullock and Johnston (2005) and analysing them under the Jeans formalism, we recover the underlying mass distribution of the parent galaxy, within distance $r/{rm kpc}in[10,100]$, with a bias of $sim12%$ and a dispersion of $sim14%$. Additionally, the mass profiles of triaxial dark matter halos taken from the SURFS simulation, within scaled radius $0.2<r/r_{rm max}<3$, are measured with a bias of $sim-2.4%$ and a dispersion of $sim10%$. The obtained dispersion is not because of Poisson noise due to small particle numbers as it is twice the later. We interpret the dispersion to be due to the inherent nature of the $Lambda{rm CDM}$ halos, for example being aspherical and out-of-equilibrium. Hence the dispersion obtained for stellar halos sets a limit of about $12%$ (after adjusting for random uncertainty) on the accuracy with which the mass profiles of the Milky Way-like galaxies can be reconstructed using the spherical Jeans equation. This limit is independent of the quantity and quality of the observational data. The reason for a non zero bias is not clear, hence its interpretation is not obvious at this stage.



rate research

Read More

153 - Maria E. De Rossi 2014
We analyse the dark, gas, and stellar mass assembly histories of low-mass halos (Mvir ~ 10^10.3 - 10^12.3 M_sun) identified at redshift z = 0 in cosmological numerical simulations. Our results indicate that for halos in a given present-day mass bin, the gas-to-baryon fraction inside the virial radius does not evolve significantly with time, ranging from ~0.8 for smaller halos to ~0.5 for the largest ones. Most of the baryons are located actually not in the galaxies but in the intrahalo gas; for the more massive halos, the intrahalo gas-to-galaxy mass ratio is approximately the same at all redshifts, z, but for the least massive halos, it strongly increases with z. The intrahalo gas in the former halos gets hotter with time, being dominant at z = 0, while in the latter halos, it is mostly cold at all epochs. The multiphase ISM and thermal feedback models in our simulations work in the direction of delaying the stellar mass growth of low-mass galaxies.
219 - Aseem Paranjape 2021
We study the radial acceleration relation (RAR) between the total ($a_{rm tot}$) and baryonic ($a_{rm bary}$) centripetal acceleration profiles of central galaxies in the cold dark matter (CDM) paradigm. We analytically show that the RAR is intimately connected with the physics of the quasi-adiabatic relaxation of dark matter in the presence of baryons in deep potential wells. This cleanly demonstrates how the mean RAR and its scatter emerge in the low-acceleration regime ($10^{-12},{rm m,s}^{-2}lesssim a_{rm bary}lesssim10^{-10},{rm m,s}^{-2}$) from an interplay between baryonic feedback processes and the distribution of CDM in dark halos. Our framework allows us to go further and study both higher and lower accelerations in detail, using analytical approximations and a realistic mock catalog of $sim342,000$ low-redshift central galaxies with $M_rleq-19$. We show that, while the RAR in the baryon-dominated, high-acceleration regime ($a_{rm bary}gtrsim10^{-10},{rm m,s}^{-2}$) is very sensitive to details of the relaxation physics, a simple `baryonification prescription matching the relaxation results of hydrodynamical CDM simulations is remarkably successful in reproducing the observed RAR without any tuning. And in the (currently unobserved) ultra-low-acceleration regime ($a_{rm bary}lesssim 10^{-12},{rm m,s}^{-2}$), the RAR is sensitive to the abundance of diffuse gas in the halo outskirts, with our default model predicting a distinctive break from a simple power-law-like relation for HI-deficient, diffuse gas-rich centrals. Our mocks also show that the RAR provides more robust, testable predictions of the $Lambda$CDM paradigm at galactic scales, with implications for alternative gravity theories, than the baryonic Tully-Fisher relation.
81 - Indranil Banik 2021
The dwarf galaxy NGC 3109 is receding 105 km/s faster than expected in a $Lambda$CDM timing argument analysis of the Local Group and external galaxy groups within 8 Mpc (Banik & Zhao 2018). If this few-body model accurately represents long-range interactions in $Lambda$CDM, this high velocity suggests that NGC 3109 is a backsplash galaxy that was once within the virial radius of the Milky Way and was slingshot out of it. Here, we use the Illustris TNG300 cosmological hydrodynamical simulation and its merger tree to identify backsplash galaxies. We find that backsplashers as massive ($geq 4.0 times 10^{10} M_odot$) and distant ($geq 1.2$ Mpc) as NGC 3109 are extremely rare, with none having also gained energy during the interaction with their previous host. This is likely due to dynamical friction. Since we identified 13225 host galaxies similar to the Milky Way or M31, we conclude that postulating NGC 3109 is a backsplash galaxy causes $>3.96sigma$ tension with the expected distribution of backsplashers in $Lambda$CDM. We show that the dark matter only version of TNG300 yields much the same result, demonstrating its robustness to how the baryonic physics is modelled. If instead NGC 3109 is not a backsplasher, consistency with $Lambda$CDM would require the 3D timing argument analysis to be off by 105 km/s for this rather isolated dwarf, which we argue is unlikely. We discuss a possible alternative scenario for NGC 3109 and the Local Group satellite planes in the context of MOND, where the Milky Way and M31 had a past close flyby $7-10$ Gyr ago.
181 - Aseem Paranjape 2021
We model the distribution of the observed profiles of 21 cm line emission from neutral hydrogen (HI) in central galaxies selected from a statistically representative mock catalog of the local Universe in the Lambda-cold dark matter framework. The distribution of these HI velocity profiles (specifically, their widths $W_{50}$) has been observationally constrained, but has not been systematically studied theoretically. Our model profiles derive from rotation curves of realistically baryonified haloes in an N-body simulation, including the quasi-adiabatic relaxation of the dark matter profile of each halo in response to its baryons. We study the predicted $W_{50}$ distribution using a realistic pipeline applied to noisy profiles extracted from our luminosity-complete mock catalog with an ALFALFA-like survey geometry and redshift selection. Our default mock is in good agreement with observed ALFALFA results for $W_{50}gtrsim700$ km/s, being incomplete at lower widths due to the intrinsic threshold of $M_rleq-19$. Variations around the default model show that the velocity width function at $W_{50}gtrsim300$ km/s is most sensitive to a possible correlation between galaxy inclination and host concentration, followed by the physics of quasi-adiabatic relaxation. We also study the excess kurtosis of noiseless velocity profiles, obtaining a distribution which tightly correlates with $W_{50}$, with a shape and scatter that depend on the properties of the turbulent HI disk. Our results open the door towards using the shapes of HI velocity profiles as a novel statistical probe of the baryon-dark matter connection.
We examine the origin of the mass discrepancy--radial acceleration relation (MDAR) of disk galaxies. This is a tight empirical correlation between the disk centripetal acceleration and that expected from the baryonic component. The MDAR holds for most radii probed by disk kinematic tracers, regardless of galaxy mass or surface brightness. The relation has two characteristic accelerations; $a_0$, above which all galaxies are baryon-dominated; and $a_{rm min}$, an effective minimum aceleration probed by kinematic tracers in isolated galaxies. We use a simple model to show that these trends arise naturally in $Lambda$CDM. This is because: (i) disk galaxies in $Lambda$CDM form at the centre of dark matter haloes spanning a relatively narrow range of virial mass; (ii) cold dark matter halo acceleration profiles are self-similar and have a broad maximum at the centre, reaching values bracketed precisely by $a_{rm min}$ and $a_0$ in that mass range; and (iii) halo mass and galaxy size scale relatively tightly with the baryonic mass of a galaxy in any successful $Lambda$CDM galaxy formation model. Explaining the MDAR in $Lambda$CDM does not require modifications to the cuspy inner mass profiles of dark haloes, although these may help to understand the detailed rotation curves of some dwarf galaxies and the origin of extreme outliers from the main relation. The MDAR is just a reflection of the self-similar nature of cold dark matter haloes and of the physical scales introduced by the galaxy formation process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا