No Arabic abstract
We propose 5-brane webs for 5d $mathcal{N}=1$ $G_2$ gauge theories. From a Higgsing of the $SO(7)$ gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure $G_2$ gauge theory using an O5-plane or an $widetilde{text{O5}}$-plane. Adding flavors to the 5-brane web for the pure $G_2$ gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d $G_2$ gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.
We consider Type IIB 5-brane configurations for 5d rank 2 superconformal theories which are classified recently by geometry in arXiv:1801.04036. We propose all the 5-brane web diagrams for these rank 2 theories and show dualities between some of different gauge theories with explicit duality map of mass parameters and Coulomb branch moduli. In particular, we explicitly construct 5-brane configurations for $G_2$ gauge theory with six flavors and its dual $Sp(2)$ and $SU(3)$ gauge theories. We also present 5-brane webs for $SU(3)$ theories of Chern-Simons level greater than 5.
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of the 6d SCFT and capture the twist in terms of the tensor branch data. We also determine the dualities between these 5d gauge theories, thus determining the sets of gauge theories having a common UV completion.
For any 5d ${cal N}=1$ superconformal field theory, we propose a complete prepotential which reduces to the perturbative prepotential for any of its possible gauge theory realizations, manifests its global symmetry when written in terms of the invariant Coulomb branch parameters, and is valid for the whole parameter region. As concrete examples, we consider $SU(2)$ gauge theories with up to 7 flavors, $Sp(2)$ gauge theories with up to 9 flavors, and $Sp(2)$ gauge theories with 1 antisymmetric tensor and up to 7 flavors, as well as their dual gauge theories.
We discuss the effective Chern-Simons levels for 3d $mathcal{N}=2$ gauge theories and their relations to the relative angles between NS5-brane and NS5-brane. We find that turning on real masses for chiral multiplets leads to various equivalent brane webs that are related by flipping the sign of mass parameters. This flip can be interpreted as 3d mirror symmetry for abelian theories. Each of these webs has a corresponding mathematical quiver structure. We check the equivalence of vortex partition functions for these brane webs by implementing topological vertex method. In addition, we compute the vortex partition functions of nonabelian theories with gauge group $U(N)$ and find the associated quiver structures and brane webs. We find that on Higgs branch nonabelian brane webs are broken to abelian brane webs with gauge group $U(1)^{otimes N}$. We also discuss the Ooguri-Vafa invariants for nonabelian theories and the movement of flavor D5-branes that leads to equivalent brane webs.
A formula was recently proposed for the perturbative partition function of certain $mathcal N=1$ gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an $mathcal N=1$ toroidal-quiver theory (a double orbifold of $mathcal N=4$ super Yang-Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the $mathcal N=1$ partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.