Do you want to publish a course? Click here

Reverberation Mapping of High-z, High-luminosity Quasars

92   0   0.0 ( 0 )
 Added by Paulina Lira
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Reverberation Mapping results after monitoring a sample of 17 high-z, high-luminosity quasars for more than 10 years using photometric and spectroscopic capabilities. Continuum and line emission flux variability is observed in all quasars. Using cross-correlation analysis we successfully determine lags between the variations in the continuum and broad emission lines for several sources. Here we present a highlight of our results and the determined radius--luminosity relations for Ly_alpha and CIV.



rate research

Read More

We present Reverberation Mapping (RM) results for 17 high-redshift, high-luminosity quasars with good quality R-band and emission line light curves. We are able to measure statistically significant lags for Ly_alpha (11 objects), SiIV (5 objects), CIV (11 objects), and CIII] (2 objects). Using our results and previous lag determinations taken from the literature, we present an updated CIV radius--luminosity relation and provide for the first time radius--luminosity relations for Ly_alpha, SiIV and CIII]. While in all cases the slope of the correlations are statistically significant, the zero points are poorly constrained because of the lack of data at the low luminosity end. We find that the emissivity weighted distance from the central source of the Ly_alpha, SiIV and CIII] line emitting regions are all similar, which corresponds to about half that of the H_beta region. We also find that 3/17 of our sources show an unexpected behavior in some emission lines, two in the Ly_alpha light curve and one in the SiIV light curve, in that they do not seem to follow the variability of the UV continuum. Finally, we compute RM black hole masses for those quasars with highly significant lag measurements and compare them with CIV single--epoch (SE) mass determinations. We find that the RM-based black hole mass determinations seem smaller than those found using SE calibrations.
Reverberation mapping (RM) of active galactic nuclei (AGNs) has been used over the past three decades to determine AGN broad-line region (BLR) sizes and central black-hole masses, and their relations with the AGNs luminosity. Until recently the sample of objects with RM data was limited to low-luminosity AGNs ($L_{rm opt} lesssim 10^{46}$ ergs s$^{-1}$) and low redshifts ($z lesssim 0.5$). Here we present results from a reverberation-mapping project of some of the most luminous and highest redshift quasars that have been mapped to date. The study is based on almost twenty years of photometric monitoring of 11 quasars, six of which were monitored spectrophotometrically for 13 years. This is the longest reverberation-mapping project carried out so far on this type of AGNs. We successfully measure a time lag between the CIV$lambda$1549 broad emission line and the quasar continuum in three objects, and measure a CIII$lambda$1909 lag in one quasar. Together with recently published data on CIV reverberation mapping, the BLR size is found to scale as the square root of the UV luminosity over eight orders of magnitude in AGN luminosity. There is a significant scatter in the relation, part of which may be intrinsic to the AGNs. Although the CIV line is probably less well suited than Balmer lines for determination of the mass of the black hole, virial masses are tentatively computed and in spite of a large scatter we find that the mass of the black hole scales as the square root of the UV luminosity.
We present deep near-infrared spectroscopy of six quasars at 6.1<z<6.7 with VLT/X-Shooter and Gemini-N/GNIRS. Our objects, originally discovered through a wide-field optical survey with the Hyper Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP), have the lowest luminosities (-25.5< M1450<-23.1 mag) of the z>5.8 quasars with measured black hole masses. From single-epoch mass measurements based on MgII2798, we find a wide range in black hole masses, from M_BH=10^7.6 to 10^9.3 Msun. The Eddington ratios L_bol/L_Edd range from 0.16 to 1.1, but the majority of the HSC quasars are powered by M_BH=10^9 Msun supermassive black holes (SMBHs) accreting at sub-Eddington rates. The Eddington ratio distribution of the HSC quasars is inclined to lower accretion rates than those of Willott et al. (2010a), who measured the black hole masses for similarly faint z=6 quasars. This suggests that the global Eddington ratio distribution is wider than has previously been thought. The presence of M_BH=10^9 Msun SMBHs at z=6 cannot be explained with constant sub-Eddington accretion from stellar remnant seed black holes. Therefore, we may be witnessing the first buildup of the most massive black holes in the first billion years of the universe, the accretion activity of which is transforming from active growth to a quiescent phase. Measurements of a larger complete sample of z>6 low-luminosity quasars, as well as deeper observations with future facilities will enable us to better understand the early SMBH growth in the reionization epoch.
We report discovery of 41 new high-z quasars and luminous galaxies, which were spectroscopically identified at 5.7 < z < 6.9. This is the fourth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, based on the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We selected the photometric candidates by a Bayesian probabilistic algorithm, and then carried out follow-up spectroscopy with the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous papers, we have now spectroscopically identified 137 extremely-red HSC sources over about 650 deg2, which include 64 high-z quasars, 24 high-z luminous galaxies, 6 [O III] emitters at z ~ 0.8, and 43 Galactic cool dwarfs (low-mass stars and brown dwarfs). The new quasars span the luminosity range from M1450 ~ -26 to -22 mag, and continue to populate a few magnitude lower luminosities than have been probed by previous wide-field surveys. In a companion paper, we derive the quasar luminosity function at z ~ 6 over an unprecedentedly wide range of M1450 ~ -28 to -21 mag, exploiting the SHELLQs and other survey outcomes.
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z < 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, 2 [O III] emitters at z ~ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ~ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (> 10^(43) erg/s) and narrow (< 500 km/s) Ly alpha lines, and also a possible mini broad absorption line system of N V 1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosity (M1450 ~ -24 to -22 mag) compared to other galaxies found at similar redshift. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ~ 6, are ongoing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا