No Arabic abstract
Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ~ 50 au (~ 0.12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in HH 111 (early Class I) protostellar system. Polarization fraction is ~ 1%. The disk in HH 212 has a radius of ~ 60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ~ 220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far side of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.
Recent observational progress has challenged the dust grain-alignment theories used to explain the polarized dust emission routinely observed in star-forming cores. In an effort to improve our understanding of the dust grain alignment mechanism(s), we have gathered a dozen ALMA maps of (sub)millimeter-wavelength polarized dust emission from Class 0 protostars, and carried out a comprehensive statistical analysis of dust polarization quantities. We analyze the statistical properties of the polarization fraction P_frac and dispersion of polarization position angles S. More specifically, we investigate the relationship between S and P_frac as well as the evolution of the product S*P_frac as a function of the column density of the gas in the protostellar envelopes. We find a significant correlation in the polarized dust emission from protostellar envelopes seen with ALMA; the power-law index differs significantly from the one observed by Planck in star-forming clouds. The product S*P_frac, which is sensitive to the dust grain alignment efficiency, is approximately constant across three orders of magnitude in envelope column density. This suggests that the grain alignment mechanism producing the bulk of the polarized dust emission in star-forming cores may not depend systematically on the local conditions such as local gas density. Ultimately, our results suggest dust alignment mechanism(s) are efficient at producing dust polarized emission in the various local conditions typical of Class 0 protostars. The grain alignment efficiency found in these objects seems to be higher than the efficiency produced by the standard RAT alignment of paramagnetic grains. Further study will be needed to understand how more efficient grain alignment via, e.g., different irradiation conditions, dust grain characteristics, or additional grain alignment mechanisms can reproduce the observations.
We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales -- where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded -- and the intermediate and small scales probed by CARMA (~1000 AU resolution), the SMA (~350 AU resolution), and ALMA (~140 AU resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 AU) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
We analyze a sample of 12 HST-selected edge-on protoplanetary disks for which the vertical extent of the emission layers can be constrained directly. We present ALMA high angular resolution continuum images (0.1arcsec) of these disks at two wavelengths, 0.89mm and 2.06mm (respectively ALMA bands 7 and 4), supplemented with archival band 6 data (1.33mm) where available. For most sources, the millimeter continuum emission is more compact than the scattered light, both in the vertical and radial directions. Six sources are resolved along their minor axis in at least one millimeter band, providing direct information on the vertical distribution of the millimeter grains. For the second largest disk of the sample, the significant difference in vertical extent between band 7 and band 4 suggests efficient size-selective vertical settling of large grains. Furthermore, the only Class I object in our sample shows evidence of flaring in the millimeter. Along the major axis, all disks are well resolved. Four of them are larger in band 7 than in band 4 in the radial direction, and three have a similar radial extent in all bands. For all disks, we also derive the millimeter brightness temperature and spectral index maps. We find that the disks are likely optically thick and that the dust emission reveals low brightness temperatures in most cases (<10K). The integrated spectral indices are similar to those of disks at lower inclination. The comparison of a generic radiative transfer disk model with our data shows that at least 3 disks are consistent with a small millimeter dust scale height, of a few au (measured at r=100au). This is in contrast with the more classical value of h_gsim10au derived from scattered light images and from gas line measurements. These results confirm, by direct observations, that large (millimeter) grains are subject to significant vertical settling in protoplanetary disks.
The Barnard 1b core shows signatures of being at the earliest stages of low-mass star formation, with two extremely young and deeply embedded protostellar objects. Hence, this core is an ideal target to study the structure and chemistry of the first objects formed in the collapse of prestellar cores. We present ALMA Band 6 spectral line observations at ~0.6 of angular resolution towards Barnard 1b. We have extracted the spectra towards both protostars, and used a Local Thermodynamic Equilibrium (LTE) model to reproduce the observed line profiles. B1b-S shows rich and complex spectra, with emission from high energy transitions of complex molecules, such as CH3OCOH and CH3CHO, including vibrational level transitions. We have tentatively detected for the first time in this source emission from NH2CN, NH2CHO, CH3CH2OH, CH2OHCHO, CH3CH2OCOH and both aGg and gGg conformers of (CH2OH)2. This is the first detection of ethyl formate (CH3CH2OCOH) towards a low-mass star forming region. On the other hand, the spectra of the FHSC candidate B1b-N are free of COMs emission. In order to fit the observed line profiles in B1b-S, we used a source model with two components: an inner hot and compact component (200 K, 0.35) and an outer and colder one (60 K, 0.6). The resulting COM abundances in B1b-S range from 1e-13 for NH2CN and NH2CHO, up to 1e-9 for CH3OCOH. Our ALMA Band 6 observations reveal the presence of a compact and hot component in B1b-S, with moderate abundances of complex organics. These results indicate that a hot corino is being formed in this very young Class 0 source.