No Arabic abstract
We investigate the propagation of spin waves in two-component mixtures of one-dimensional Bose gases interacting through repulsive contact potentials. By using quantum Monte Carlo methods we calculate static ground-state properties, such as the spin susceptibility and the spin structure factor, as a function of both the intra-species and inter-species coupling strength and we determine the critical parameters for phase separation. In homogeneous mixtures, results of the velocity of spin waves and of its softening close to the critical point of phase separation are obtained by means of a sum-rule approach. We quantify the non-dissipative drag effect, resulting from the Andreev-Bashkin current-current interaction between the two components of the gas, and we show that in the regime of strong coupling it causes a significant suppression of the spin-wave velocity.
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
We investigate magnetic properties of strongly interacting bosonic mixtures confined in one dimensional geometries, focusing on recently realized Rb-K gases with tunable interspecies interactions. By combining analytical perturbation theory results with density-matrix-renormalization group calculations, we provide quantitative estimates of the ground state phase diagram as a function of the relevant microscopic quantities, identifying the more favorable experimental regimes in order to access the various magnetic phases. Finally, we qualitatively discuss the observability of such phases in realistic setups when finite temperature effects have to be considered.
In quantum gases with contact repulsion, the distribution of momenta of the atoms typically decays as $sim 1/|p|^4$ at large momentum $p$. Tans relation connects the amplitude of that $1/|p|^4$ tail to the adiabatic derivative of the energy with respect to the gas coupling constant or scattering length. Here it is shown that the relation breaks down in the one-dimensional Bose gas with contact repulsion, for a peculiar class of stationary states. These states exist thanks to the infinite number of conserved quantities in the system, and they are characterized by a rapidity distribution which itself decreases as $1/|p|^4$. In the momentum distribution, that rapidity tail adds to the usual Tan contact term. Remarkably, atom losses, which are ubiquitous in experiments, do produce such peculiar states. The development of the tail of the rapidity distribution originates from the ghost singularity of the wavefunction immediately after each loss event. This phenomenon is discussed for arbitrary interaction strengths, and it is supported by exact calculations in the two asymptotic regimes of infinite and weak repulsion.
We measure the position- and momentum- space breathing dynamics of trapped one-dimensional Bose gases. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking into account the effect of finite temperature is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism. The disappearance of this mechanism through the quasicondensation crossover is mapped out.
We experimentally investigate the quantum criticality and Tomonaga-Luttinger liquid (TLL) behavior within one-dimensional (1D) ultracold atomic gases. Based on the measured density profiles at different temperatures, the universal scaling laws of thermodynamic quantities are observed. The quantum critical regime and the relevant crossover temperatures are determined through the double-peak structure of the specific heat. In the TLL regime, we obtain the Luttinger parameter by probing sound propagation. Furthermore, a characteristic power-law behavior emerges in the measured momentum distributions of the 1D ultracold gas, confirming the existence of the TLL.