Do you want to publish a course? Click here

Hybridization at superconductor-semiconductor interfaces

85   0   0.0 ( 0 )
 Added by Karsten Flensberg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hybrid superconductor-semiconductor devices are currently one of the most promising platforms for realizing Majorana zero modes. Their topological properties are controlled by the band alignment of the two materials, as well as the electrostatic environment, which are currently not well understood. Here, we pursue to fill in this gap and address the role of band bending and superconductor-semiconductor hybridization in such devices by analyzing a gated single Al-InAs interface using a self-consistent Schrodinger-Poisson approach. Our numerical analysis shows that the band bending leads to an interface quantum well, which localizes the charge in the system near the superconductor-semiconductor interface. We investigate the hybrid band structure and analyze its response to varying the gate voltage and thickness of the Al layer. This is done by studying the hybridization degrees of the individual subbands, which determine the induced pairing and effective $g$-factors. The numerical results are backed by approximate analytical expressions which further clarify key aspects of the band structure. We find that one can obtain states with strong superconductor-semiconductor hybridization at the Fermi energy, but this requires a fine balance of parameters, with the most important constraint being on the width of the Al layer. In fact, in the regime of interest, we find an almost periodic dependence of the hybridization degree on the Al width, with a period roughly equal to the thickness of an Al monolayer. This implies that disorder and shape irregularities, present in realistic devices, may play an important role for averaging out this sensitivity and, thus, may be necessary for stabilizing the topological phase.



rate research

Read More

We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of the superconductor-semiconductor interface quality and sketch out where further progress in materials science of these interfaces can take us. Finally, we discuss the prospects of observing more exotic non-Abelian anyons based on the same materials platform, and how to make connections to high energy physics.
We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair mediated transport. When sub-gap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti) crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires.
Studying the interplay between superconductivity and quantum magnetotransport in two-dimensional materials has been a topic of interest in recent years. Towards such a goal it is important to understand the impact of magnetic field on the charge transport at the superconductor-normal channel (SN) interface. Here we carried out a comprehensive study of Andreev conductance under weak magnetic fields using diffusive superconductor- graphene Josephson weak links. We observe that the Andreev conductance is suppressed even in magnetic fields far below the upper critical field of the superconductor. The suppression of Andreev conductance depends on and can be minimized by controlling the ramping of the magnetic field. We identify that the key factor behind this suppression is the reduction of the superconducting gap due to the piling of vortices on the superconducting contacts. In devices where superconducting gap at the superconductor-graphene interface is heavily reduced by proximity effect, the enlarged vortex cores overlap quickly with increasing magnetic field, resulting in a rapid decrease of the interfacial gap. However, in weak links with relatively large effective superconducting gap the AR conductance persists up to the upper critical field. Our results provide guidance to the study of quantum material-superconductor systems in presence of magnetic field, where survival of induced superconductivity is critical.
Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case that the spin flip originates from a spatially non-uniform magnetization direction in the half metal. We calculate both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of the gradient of the magnetization with respect to the interface. Establishing a connection between the scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green function in the half metal.
In this communication we consider generalities of the proximity effect in a contact between a conventional $s$-wave superconductor (S) nano-island and a thin film of a topological insulator (TI). A local hybridization coupling mechanism is considered and a corresponding model is corroborated that captures not only the induced unconventional superconductivity in a TI, but also predicts the spreading of topologically protected surface states into the superconducting over-layer. This dual nature of the proximity effect leads specifically to a modified description of topological superconductivity in these systems. Experimentally accessible signatures of this phenomenon are discussed in the context of scanning tunneling microscopy measurements. For this purpose an effective density of states is computed in both the superconductor and topological insulator. As a guiding example, practical applications are made for Nb islands deposited on a surface of Bi$_2$Se$_3$. The obtained results are general and can be applied beyond the particular material system used. Possible implications of these results to proximity circuits and hybrid hardware devices for quantum computation processing are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا