We report a detailed ab initio study of two superlattice heterostructures, one component of which is a unit cell of CuPt ordered InSb_(0.5)As_(0.5). This alloy part of the heterostructures is a topological semimetal. The other component of each system is a semiconductor, zincblende-InSb, and wurtzite-InAs. Both heterostructures are semiconductors. Our theoretical analysis predicts that the variation in the thickness of the InSb layer in InSb/InSb_(0.5)As_(0.5) heterostructure renders altered band gaps with different characteristics (i.e. direct or indirect). The study holds promise for fabricating heterostructures, in which the modulation of the thickness of the layers changes the number of carrier pockets in these systems.