Do you want to publish a course? Click here

$b to c ell u$ anomalies in light of extended scalar sectors

146   0   0.0 ( 0 )
 Added by Avirup Shaw
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Considering the recent experimental results on exclusive semileptonic $B$ meson decays showing sizable departure from their Standard Model prediction of lepton flavor universality and keeping ongoing and proposed non-standard Higgs searches in mind, we explore the charged current flavor observables ($mathcal{R}_{D^{(*)}}$, $mathcal{R}_{J/psi}$), among other $bto cell u$ transitions, in the presence of a relevant scalar current effective new physics operator. We use $B_c$ lifetime and predicted bounds on the branching fraction of $B_c to tau u$ decay as constraints. We show the allowed parameter space in terms of the real and imaginary parts of the corresponding Wilson coefficients for such interactions. Under the light of obtained results, we study the prospect of two benchmark models, rendering the Wilson coefficients real (Georgi-Machacek (GM)) and complex (Leptoquark (LQ)) respectively. We show that constraints from $bto cell u$ on GM parameters are consistent with other flavor constraints on the model, if we drop the Babar~results. Including those disfavors the model by more than $3sigma$. On the other hand, one benchmark LQ scenario, which gives rise to a single scalar current effective interaction, is still allowed within $68%$ confidence level, albeit with a shrunk parameter space.



rate research

Read More

One of the fundamental predictions of the Standard Model is Lepton Flavour Universality. Any deviation from this prediction would indicate the existence of physics beyond the Standard Model. Recent LHCb measurements present a pattern of deviations from this prediction in rare B-meson decays. While not yet statistically significant (currently $2.2-2.6 sigma$), these measurements show an imbalance in the ratio of B-meson decays to a pair of muons in association with a Kaon and decays to a pair of electrons in association with a Kaon. If the measured deviations are indeed present in nature, new physics may mediate interactions involving a pair of same flavour leptons, a $b$- and an $s$-quark. We present the prospect for a search of new physics in this type of interactions at the LHC, in a process that involves an $s$-quark, and a final state with two leptons and a $b$-jet. The proposed search can improve the sensitivity to new physics in these processes by a factor of four compared to current searches with in the total dataset expected at the LHC.
Ratios of branching fractions of semileptonic B decays, $(B to H mu mu)$ over $(B to H ee)$ with $H=K, K^*,X_s, K_0(1430), phi, ldots$ are sensitive probes of lepton universality. In the Standard Model, the underlying flavor changing neutral current process $brightarrow s ell ell$ is lepton flavor universal. However models with new flavor violating physics above the weak scale can give substantial non-universal contributions. The leading contributions from such new physics can be parametrized by effective dimension six operators involving left- or right-handed quarks. We show that in the double ratios $R_{X_s}/R_K$, $R_{K^*}/R_K$ and $R_phi/R_K$ the dependence on new physics coupling to left-handed quarks cancels out. Thus a measurement of any of these double ratios is a clean probe of flavor nonuniversal physics coupling to right-handed quarks. We also point out that the observables $R_{X_s}$, $R_{K^*}$, $R_{K_0(1430)}$ and $R_phi$ depend on the same combination of Wilson coefficients and therefore satisfy simple consistency relations.
Applying the method of light-cone sum rules with photon distribution amplitudes, we compute the subleading-power correction to the radiative leptonic $B to gamma ell u$ decay, at next-to-leading order in QCD for the twist-two contribution and at leading order in $alpha_s$ for the higher-twist contributions, induced by the hadronic component of the collinear photon. The leading-twist hadronic photon effect turns out to preserve the symmetry relation between the two $B to gamma$ form factors due to the helicity conservation, however, the higher-twist hadronic photon corrections can yield symmetry-breaking effect already at tree level in QCD. Using the conformal expansion of photon distribution amplitudes with the non-perturbative parameters estimated from QCD sum rules, the twist-two hadronic photon contribution can give rise to approximately 30% correction to the leading-power direct photon effect computed from the perturbative QCD factorization approach. In contrast, the subleading-power corrections from the higher-twist two-particle and three-particle photon distribution amplitudes are estimated to be of ${cal O} (3 sim 5%)$ with the light-cone sum rule approach. We further predict the partial branching fractions of $B to gamma ell u $ with a photon-energy cut $E_{gamma} geq E_{rm cut}$, which are of interest for determining the inverse moment of the leading-twist $B$-meson distribution amplitude thanks to the forthcoming high-luminosity Belle II experiment at KEK.
We comprehensively study the charged-Higgs contributions to the leptonic $B^-_q to ell bar u$ ($q=u,c$) and semileptonic $bar B to X_q ell bar u$ ($X_u=pi, rho; X_c=D,D^*$) decays in the type-III two-Higgs-doublet model (2HDM). We employ the Cheng-Sher ansatz to suppress the tree-level flavor-changing neutral currents (FCNCs) in the quark sector. When the strict constraints from the $Delta B=2$ and $bto s gamma$ processes are considered, parameters $chi^u_{tq}$ from the quark couplings and $chi^ell_ell$ from the lepton couplings dictate the leptonic and semileptonic $B$ decays. It is found that when the measured $B^-_uto tau bar u$ and indirect bound of $B^-_c to tau bar u$ obtained by LEP1 data are taken into account, $R(D)$ and $R(pi)$ can have broadly allowed ranges; however, the values of $R(rho)$ and $R(D^*)$ are limited to approximately the standard model (SM) results. We also find that the same behaviors also occur in the $tau$-lepton polarizations and forward-backward asymmetries ($A^{X_q,tau}_{FB}$) of the semileptonic decays, with the exception of $A^{D^*,tau}_{FB}$, for which the deviation from the SM due to the charged-Higgs effect is still sizable. In addition, the $q^2$-dependent $A^{pi,tau}_{FB}$ and $A^{D,tau}_{FB}$ can be very sensitive to the charged-Higgs effects and have completely different shapes from the SM.
Motivated by the persistent anomalies reported in the $bto ctaubar{ u}$ data, we perform a general model-independent analysis of these transitions, in the presence of light right-handed neutrinos. We adopt an effective field theory approach and write a low-energy effective Hamiltonian, including all possible dimension-six operators. The corresponding Wilson coefficients are determined through a numerical fit to all available experimental data. In order to work with a manageable set of free parameters, we define eleven well-motivated scenarios, characterized by the different types of new physics that could mediate these transitions, and analyse which options seem to be preferred by the current measurements. The data exhibit a clear preference for new-physics contributions, and good fits to the data are obtained in several cases. However, the current measurement of the longitudinal $D^*$ polarization in $Bto D^*tau bar u$ cannot be easily accommodated within its experimental $1sigma$ range. A general analysis of the three-body $Bto D tau bar u$ and four-body $Bto D^*(to Dpi)tau bar u$ angular distributions is also presented. The accessible angular observables are studied in order to assess their sensitivity to the different new physics scenarios. Experimental information on these distributions would help to disentangle the dynamical origin of the current anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا