A Composition Theorem via Conflict Complexity


Abstract in English

Let $R(cdot)$ stand for the bounded-error randomized query complexity. We show that for any relation $f subseteq {0,1}^n times mathcal{S}$ and partial Boolean function $g subseteq {0,1}^n times {0,1}$, $R_{1/3}(f circ g^n) = Omega(R_{4/9}(f) cdot sqrt{R_{1/3}(g)})$. Independently of us, Gavinsky, Lee and Santha cite{newcomp} proved this result. By an example demonstrated in their work, this bound is optimal. We prove our result by introducing a novel complexity measure called the emph{conflict complexity} of a partial Boolean function $g$, denoted by $chi(g)$, which may be of independent interest. We show that $chi(g) = Omega(sqrt{R(g)})$ and $R(f circ g^n) = Omega(R(f) cdot chi(g))$.

Download