No Arabic abstract
We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogues, independently of the details of the atomic wave functions. We analyzed the photo-absorption cross sections of mixed-multipolarity $E2-M1$ transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photo-excitation rate as a function of the atoms position (or the impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the targets atom position is resolved with sub-wavelength accuracy, for example, with Paul traps. Numerical examples are presented for Boron-like highly-charged ions (HCI).
Level crossings in the ground state of ions occur when the nuclear charge Z and ion charge Z_ion are varied along an isoelectronic sequence until the two outermost shells are nearly degenerate. We examine all available level crossings in the periodic table for both near neutral ions and highly charged ions (HCIs). Normal E1 transitions in HCIs are in X-ray range, however level crossings allow for optical electromagnetic transitions that could form the reference transition for high accuracy atomic clocks. Optical E1 (due to configuration mixing), M1 and E2 transitions are available in HCIs near level crossings. We present scaling laws for energies and amplitudes that allow us to make simple estimates of systematic effects of relevance to atomic clocks. HCI clocks could have some advantages over existing optical clocks because certain systematic effects are reduced, for example they can have much smaller thermal shifts. Other effects such as fine-structure and hyperfine splitting are much larger in HCIs, which can allow for richer spectra. HCIs are excellent candidates for probing variations in the fine-structure constant, alpha, in atomic systems as there are transitions with the highest sensitivity to alpha-variation.
Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in $bm{10^{18}}$. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of $bm{1.6times 10^{-18}}$ after only $bm{7}$ hours of averaging.
We describe the operation of two GaN-based diode lasers for the laser spectroscopy of gallium at 403 nm and 417 nm. Their use in an external cavity configuration enabled the investigation of absorption spectroscopy in a gallium hollow cathode. We have analyzed the Doppler broadened profiles accounting for hyperfine and isotope structure and extracting both the temperature and densities of the neutral atomic sample produced in the glow discharge. We have also built a setup to produce a thermal atomic beam of gallium. Using the GaN-based diode lasers we have studied the laser induced fluorescence and hyperfine resolved spectra of gallium.
A future gamma factory at CERN or accelerator-based gamma sources elsewhere can include the possibility of energetic twisted photons, which are photons with a structured wave front that can allow a pre-defined large angular momentum along the beam direction. Twisted photons are potentially a new tool in hadronic physics, and we consider here one possibility, namely the photoproduction of $Delta$(1232) baryons using twisted photons. We show that particular polarization amplitudes isolate the smaller partial wave amplitudes and they are measurable without interference from the terms that are otherwise dominant.
We study an integrated silicon photonic chip, composed of several sub-wavelength ridge waveguides, and immersed in a micro-cell with rubidium vapor. Employing two-photon excitation, including a telecom wavelength, we observe that the waveguide transmission spectrum gets modified when the photonic mode is coupled to rubidium atoms through its evanescent tail. Due to the enhanced electric field in the waveguide cladding, the atomic transition can be saturated at a photon number $approx$ 80 times less than a free-propagating beam case. The non-linearity of the atom-clad Si-waveguide is about 4 orders of magnitude larger than maximum achievable value in doped Si photonics. The measured spectra corroborate well with a generalized effective susceptibility model that includes the Casimir-Polder potentials, due to the dielectric surface, and the transient interaction between flying atoms and the evanescent waveguide mode. This work paves the way towards a miniaturized, low-power, and integrated hybrid atomic-photonic system compatible with CMOS technologies.