Do you want to publish a course? Click here

Scattering and inverse scattering for nonlinear quantum walks

356   0   0.0 ( 0 )
 Added by Masaya Maeda
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study large time behavior of quantum walks (QWs) with self-dependent (nonlinear) coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linear) QWs such as dispersive estimates and Strichartz estimate. Such argument is standard in the study of nonlinear Schrodinger equations and discrete nonlinear Schrodinger equations but it seems to be the first time to be applied to QW.



rate research

Read More

We study large time behavior of quantum walks (QW) with self-dependent coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linear) QW such as Strichartz estimate. Such argument is standard in the study of nonlinear Schrodinger equations but it seems to be the first time to be applied to QW. We also numerically study the dynamics of QW and observe soliton like solutions.
We develop the Riemann-Hilbert problem approach to inverse scattering for the two-dimensional Schrodinger equation at fixed energy. We obtain global or gener
We prove the existence of scattering states for the defocusing cubic Gross-Pitaevskii (GP) hierarchy in ${mathbb R}^3$. Moreover, we show that an energy growth condition commonly used in the well-posedness theory of the GP hierarchy is, in a specific sense, necessary. In fact, we prove that without the latter, there exist initial data for the focusing cubic GP hierarchy for which instantaneous blowup occurs.
We consider quantum walks with position dependent coin on 1D lattice $mathbb{Z}$. The dispersive estimate $|U^tP_c u_0|_{l^infty}lesssim (1+|t|)^{-1/3} |u_0|_{l^1}$ is shown under $l^{1,1}$ perturbation for the generic case and $l^{1,2}$ perturbation for the exceptional case, where $U$ is the evolution operator of a quantum walk and $P_c$ is the projection to the continuous spectrum. This is an analogous result for Schrodinger operators and discrete Schrodinger operators. The proof is based on the estimate of oscillatory integrals expressed by Jost solutions.
We consider the inverse scattering on the quantum graph associated with the hexagonal lattice. Assuming that the potentials on the edges are compactly supported and symmetric, we show that the S-matrix for all energies in any given open set in the continuous spectrum determines the potentials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا