Do you want to publish a course? Click here

Full-disc $^{13}$CO(1-0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H$_2$ conversion factor

73   0   0.0 ( 0 )
 Added by Diane Cormier
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While $^{12}$CO has been targeted extensively, isotopologues such as $^{13}$CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new dataset of $^{13}$CO(1-0) observations with the IRAM 30-m telescope of the full discs of 9 nearby spiral galaxies from the EMPIRE survey at a spatial resolution of $sim$1.5kpc. $^{13}$CO(1-0) is mapped out to $0.7-1r_{25}$ and detected at high signal-to-noise throughout our maps. We analyse the $^{12}$CO(1-0)-to-$^{13}$CO(1-0) ratio ($Re$) as a function of galactocentric radius and other parameters such as the $^{12}$CO(2-1)-to-$^{12}$CO(1-0) intensity ratio, the 70-to-160$mu$m flux density ratio, the star-formation rate surface density, the star-formation efficiency, and the CO-to-H$_2$ conversion factor. We find that $Re$ varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favored explanations for the observed $Re$ variations, while abundance changes may also be at play. We calculate a spatially-resolved $^{13}$CO(1-0)-to-H$_2$ conversion factor and find an average value of $1.0times10^{21}$ cm$^{-2}$ (K.km/s)$^{-1}$ over our sample with a standard deviation of a factor of 2. We find that $^{13}$CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than $^{12}$CO(1-0) in the galaxy centres where the fraction of dense gas is larger.

rate research

Read More

Both the CO(2-1) and CO(1-0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2-1)-to-CO(1-0) ratio, $R_{21}$. We compare new, high quality CO(1-0) data from the IRAM 30-m EMPIRE survey to the latest available CO(2-1) maps from HERACLES, PHANGS-ALMA, and a new IRAM 30-m M51 Large Program. This allows us to measure $R_{21}$ across the full star-forming disc of nine nearby, massive, star-forming spiral galaxies at 27 (${sim} 1{-}2$ kpc) resolution. We find an average $R_{21} = 0.64pm0.09$ when we take the luminosity-weighted mean of all individual galaxies. This result is consistent with the mean ratio for disc galaxies that we derive from single-pointing measurements in the literature, $R_{rm 21, lit}~=~0.59^{+0.18}_{-0.09}$. The ratio shows weak radial variations compared to the point-to-point scatter in the data. In six out of nine targets the central enhancement in $R_{21}$ with respect to the galaxy-wide mean is of order $sim 10{-}20%$. We estimate an azimuthal scatter of $sim$20% in $R_{21}$ at fixed galactocentric radius but this measurement is limited by our comparatively coarse resolution of 1.5 kpc. We find mild correlations between $R_{21}$ and CO brightness temperature, IR intensity, 70-to-160$ mu$m ratio, and IR-to-CO ratio. All correlations indicate that $R_{21}$ increases with gas surface density, star formation rate surface density, and the interstellar radiation field.
We investigate the relationship between the dust-to-metals ratio (D/M) and the local interstellar medium environment at ~2 kpc resolution in five nearby galaxies: IC342, M31, M33, M101, and NGC628. A modified blackbody model with a broken power-law emissivity is used to model the dust emission from 100 to 500 um observed by Herschel. We utilize the metallicity gradient derived from auroral line measurements in HII regions whenever possible. Both archival and new CO rotational line and HI 21 cm maps are adopted to calculate gas surface density, including new wide field CO and HI maps for IC342 from IRAM and the VLA, respectively. We experiment with several prescriptions of CO-to-H$_2$ conversion factor, and compare the resulting D/M-metallicity and D/M-density correlations, both of which are expected to be non-negative from depletion studies. The D/M is sensitive to the choice of the conversion factor. The conversion factor prescriptions based on metallicity only yield too much molecular gas in the center of IC342 to obtain the expected correlations. Among the prescriptions tested, the one that yields the expected correlations depends on both metallicity and surface density. The 1-$sigma$ range of the derived D/M spans 0.40-0.58. Compared to chemical evolution models, our measurements suggest that the dust growth time scale is much shorter than the dust destruction time scale. The measured D/M is consistent with D/M in galaxy-integrated studies derived from infrared dust emission. Meanwhile, the measured D/M is systematically higher than the D/M derived from absorption, which likely indicates a systematic offset between the two methods.
We derive the CO-to-H2 conversion factor, X_CO = N(H2)/I_CO, across the Perseus molecular cloud on sub-parsec scales by combining the dust-based N(H2) data with the I_CO data from the COMPLETE Survey. We estimate an average X_CO ~ 3 x 10^19 cm^-2 K^-1 km^-1 s and find a factor of ~3 variations in X_CO between the five sub-regions in Perseus. Within the individual regions, X_CO varies by a factor of ~100, suggesting that X_CO strongly depends on local conditions in the interstellar medium. We find that X_CO sharply decreases at Av < 3 mag but gradually increases at Av > 3 mag, with the transition occurring at Av where I_CO becomes optically thick. We compare the N(HI), N(H2), I_CO, and X_CO distributions with two models of the formation of molecular gas, a one-dimensional photodissociation region (PDR) model and a three-dimensional magnetohydrodynamic (MHD) model tracking both the dynamical and chemical evolution of gas. The PDR model based on the steady state and equilibrium chemistry reproduces our data very well but requires a diffuse halo to match the observed N(HI) and I_CO distributions. The MHD model generally matches our data well, suggesting that time-dependent effects on H2 and CO formation are insignificant for an evolved molecular cloud like Perseus. However, we find interesting discrepancies, including a broader range of N(HI), likely underestimated I_CO, and a large scatter of I_CO at small Av. These discrepancies likely result from strong compressions/rarefactions and density fluctuations in the MHD model.
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0$pm$0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4$pm$0.9) and ultraluminous infrared galaxies (1.1$pm$0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends qualitatively agree with expectations for carbon and oxygen isotopic abundance variations due to stellar nucleosynthesis, with a possible effect of fractionation.
We present Herschel PACS observations of the [CII] 158 micron emission line in a sample of 24 intermediate mass (9<logM$_ast$/M$_odot$<10) and low metallicity (0.4< Z/Z$_odot$<1.0) galaxies from the xCOLD GASS survey. Combining them with IRAM CO(1-0) measurements, we establish scaling relations between integrated and molecular region [CII]/CO(1-0) luminosity ratios as a function of integrated galaxy properties. A Bayesian analysis reveals that only two parameters, metallicity and offset from the star formation main sequence, $Delta$MS, are needed to quantify variations in the luminosity ratio; metallicity describes the total dust content available to shield CO from UV radiation, while $Delta$MS describes the strength of this radiation field. We connect the [CII]/CO luminosity ratio to the CO-to-H$_2$ conversion factor and find a multivariate conversion function $alpha_{CO}$, which can be used up to z~2.5. This function depends primarily on metallicity, with a second order dependence on $Delta$MS. We apply this to the full xCOLD GASS and PHIBSS1 surveys and investigate molecular gas scaling relations. We find a flattening of the relation between gas mass fraction and stellar mass at logM$_ast$/M$_odot$<10. While the molecular gas depletion time varies with sSFR, it is mostly independent of mass, indicating that the low L$_{CO}$/SFR ratios long observed in low mass galaxies are entirely due to photodissociation of CO, and not to an enhanced star formation efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا