Do you want to publish a course? Click here

Predicting the binary black hole population of the Milky Way with cosmological simulations

140   0   0.0 ( 0 )
 Added by Astrid Lamberts
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Binary black holes are the primary endpoint of massive stellar evolution. Their properties provide a unique opportunity to constrain binary evolution, which is still poorly understood. In this paper, we predict the inventory of binary black holes and their merger products in/around the Milky Way, and detail their main properties. We present the first combination of a high-resolution cosmological simulation of a Milky Way-mass galaxy with a binary population synthesis model. The hydrodynamic simulation, taken from the FIRE project, provides a cosmologically realistic star formation history for the galaxy and its stellar halo and satellites. We apply a metallicity-dependent evolutionary model to the star particles to produce individual binary black holes. We find that a million binary black holes have merged in the model Milky Way, and 3 million binaries are still present, with an average mass of 28 Msun per binary. Because the black hole progenitors are biased towards low metallicity stars, half reside in the stellar halo and satellites and 40 per cent of the binaries were formed outside the main galaxy. This trend increases with the masses of the black holes. The numbers and mass distribution of the merged systems is compatible with the LIGO/Virgo detections. Observations of these black holes will be challenging, both with electromagnetic methods and LISA. We find that a cosmologically realistic star formation history, with self-consistent metal enrichment and Galactic accretion history, are key ingredients for determining binary black hole rates that can be compared with observations to constrain massive binary evolution.



rate research

Read More

We apply a semi-analytic galaxy formation model to two high resolution cosmological N-body simulations to investigate analogues of the Milky Way system. We select these according to observed properties of the Milky Way rather than by halo mass as in most previous work. For disk-dominated central galaxies with stellar mass (5--7) x 10d10Msun, the median host halo mass is 1.4 x 10d12Msun, with 1 sigma dispersion in the range [0.86, 3.1] x 10d12Msun, consistent with dynamical measurements of the Milky Way halo mass. For any given halo mass, the probability of hosting a Milky Way system is low, with a maximum of ~20% in haloes of mass ~10d12Msun. The model reproduces the V-band luminosity function and radial profile of the bright (MV < -9) Milky Way satellites. Galaxy formation in low mass haloes is found to be highly stochastic, resulting in an extremely large scatter in the relation between MV (or stellar mass) for satellites and the depth of the subhalo potential well in which they live, as measured by the maximum of the rotation curve, Vmax. We conclude that the too big to fail problem is an artifact of selecting satellites in N-body simulations according to subhalo properties: in 10% of cases we find that three or fewer of the brightest (or most massive) satellites have Vmax > 30 km/s. Our model predicts that around half of the dark matter subhaloes with Vmax > 20 km/s host satellites fainter than MV = -9 and so may be missing from existing surveys.
We analyse from an observational perspective the formation history and kinematics of a Milky Way-like galaxy from a high-resolution zoom-in cosmological simulation that we compare to those of our Galaxy as seen by Gaia DR2 to better understand the origin and evolution of the Galactic thin and thick discs. The cosmological simulation was carried out with the GADGET-3 TreePM+SPH code using the MUlti Phase Particle Integrator (MUPPI) model. We disentangle the complex overlapping of stellar generations that rises from the top-down and inside-out formation of the galactic disc. We investigate cosmological signatures in the phase-space of mono-age populations and highlight features stemming from past and recent dynamical perturbations. In the simulation, we identify a satellite with a stellar mass of $1.2 times 10^9$ M$_odot$, i.e. stellar mass ratio $Delta sim 5.5$ per cent at the time, accreted at $z sim 1.6$, which resembles the major merger Gaia-Sausage-Enceladus that produced the Galactic thick disc, i.e. $Delta sim 6$ per cent. We found at $z sim 0.5-0.4$ two merging satellites with a stellar mass of $8.8 times 10^8$ M$_odot$ and $5.1 times 10^8$ M$_odot$ that are associated to a strong starburst in the Star Formation History, which appears fairly similar to that recently found in the Solar Neighbourhood. Our findings highlight that detailed studies of coeval stellar populations kinematics, which are made available by current and future Gaia data releases and in synergy with simulations, are fundamental to unravel the formation and evolution of the Milky Way discs.
We determine the main properties of the Galactic binary black hole (BBH) population detectable by LISA and strategies to distinguish them from the much more numerous white dwarf binaries. We simulate BBH populations based on cosmological simulations of Milky Way-like galaxies and binary evolution models. We then determine their gravitational wave emission as observed by LISA and build mock catalogs. According to our model LISA will detect $approx4(6)$ binary black holes assuming 4(10) years of operations. Those figures grow to $approx6(9)$ when models are re-normalized to the inferred LIGO/Virgo merger rates. About 40%(70%) of the sources will have a good enough chirp mass measurement to separate them from the much lighter white dwarf and neutron star binaries. Most of the remaining sources should be identifiable by their lack of electromagnetic counterpart within $approx100$ pc. These results are robust with respect to the current uncertainties of the BBH merger rate as measured by LIGO/Virgo as well as the global mass spectrum of the binaries. We determine there is a 94 per cent chance that LISA finds at least one of these systems, which will allow us to pinpoint the conditions where they were formed and possibly find unique electromagnetic signatures.
We present the analysis of a suite of simulations run with different particle-and grid-based cosmological hydrodynamical codes and compare them with observational data of the Milky Way. This is the first study to make comparisons of properties of galaxies simulated with particle and grid-based codes. Our analysis indicates that there is broad agreement between these different modelling techniques. We study the velocity dispersion - age relation for disc stars at z=0 and find that four of the simulations are more consistent with observations by Holmberg et al. (2008) in which the stellar disc appears to undergo continual/secular heating. Two other simulations are in better agreement with the Quillen & Garnett (2001) observations that suggest a saturation in the heating profile for young stars in the disc. None of the simulations have thin discs as old as that of the Milky Way. We also analyse the kinematics of disc stars at the time of their birth for different epochs in the galaxies evolution and find that in some simulations old stars are born cold within the disc and are subsequently heated, while other simulations possess old stellar populations which are born relatively hot. The models which are in better agreement with observations of the Milky Ways stellar disc undergo significantly lower minor-merger/assembly activity after the last major merger - i.e. once the disc has formed. All of the simulations are significantly hotter than the Milky Way disc; on top of the effects of mergers, we find a floor in the dispersion that is related to the underlying treatment of the heating and cooling of the interstellar medium, and the low density threshold which such codes use for star formation. This finding has important implications for all studies of disc heating that use hydrodynamical codes.
57 - Oliver Newton 2017
The total number and luminosity function of the population of dwarf galaxies of the Milky Way (MW) provide important constraints on the nature of the dark matter and on the astrophysics of galaxy formation at low masses. However, only a partial census of this population exists because of the flux limits and restricted sky coverage of existing Galactic surveys. We combine the sample of satellites recently discovered by the Dark Energy Survey (DES) with the satellites found in Sloan Digital Sky Survey (SDSS) Data Release 9 (together these surveys cover nearly half the sky) to estimate the total luminosity function of satellites down to $M_{rm V}=0$. We apply a new Bayesian inference method in which we assume that the radial distribution of satellites independently of absolute magnitude follows that of subhaloes selected according to their peak maximum circular velocity. We find that there should be at least $124^{+40}_{-27}$ (68 per cent CL, statistical error) satellites brighter than $M_{rm V}=0$ within $300$ kpc of the Sun. As a result of our use of new data and better simulations, and a more robust statistical method, we infer a much smaller population of satellites than reported in previous studies using earlier SDSS data only; we also address an underestimation of the uncertainties in earlier work by accounting for stochastic effects. We find that the inferred number of faint satellites depends only weakly on the assumed mass of the MW halo and we provide scaling relations to extend our results to different assumed halo masses and outer radii. We predict that half of our estimated total satellite population of the MW should be detected by the Large Synoptic Survey Telescope. The code implementing our estimation method is available online.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا