Do you want to publish a course? Click here

Improved Limits on Spin-Mass Interactions

126   0   0.0 ( 0 )
 Added by Junyi Lee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Very light particles with CP-violating couplings to ordinary matter, such as axions or axion-like particles, can mediate long-range forces between polarized and unpolarized fermions. We describe a new experimental search for such forces between unpolarized nucleons in two 250 kg Pb weights and polarized neutrons and electrons in a $^3$He-K co-magnetometer located about 15 cm away. We place improved constrains on the products of scalar and pseudoscalar coupling constants, $g^n_p g^N_s < 4.2times10^{-30}$ and $g^e_p g^N_s < 1.7times10^{-30}$ (95% CL) for axion-like particle masses less than $10^{-6}$ eV, which represents an order of magnitude improvement over the best previous neutron laboratory limit.



rate research

Read More

We show that a previous polarized 3He experiment at Princeton, plus Eot-Wash equivalence-principle tests, constrain exotic, long-ranged (lambda > 0.15m) parity-violating interactions of neutrons at levels well below those inferred from a recent study of the parity-violating spin-precession of neutrons transmitted through liquid 4He. For lambda > 1.0e8 meters the bounds on gAgV are improved by a 11 orders of magnitude.
In the article Limits on possible new nucleon monopole-dipole interactions from the spin relaxation rate of polarized $^3$He gas, new limits on short-range, Axion-like interactions are presented. In this comment it is shown that the theoretical treatement of the data overestimates the sensitivity of the proposed method. We provide the corrected limits.
A search for millicharged particles, a simple extension of the standard model, has been performed with the ArgoNeuT detector exposed to the Neutrinos at the Main Injector beam at Fermilab. The ArgoNeuT Liquid Argon Time Projection Chamber detector enables a search for millicharged particles through the detection of visible electron recoils. We search for an event signature with two soft hits (MeV-scale energy depositions) aligned with the upstream target. For an exposure of the detector of $1.0$ $times$ $10^{20}$ protons on target, one candidate event has been observed, compatible with the expected background. This search is sensitive to millicharged particles with charges between $10^{-3}e$ and $10^{-1}e$ and with masses in the range from $0.1$ GeV to $3$ GeV. This measurement provides leading constraints on millicharged particles in this large unexplored parameter space region.
We investigated mu+ decays at rest produced at the ISIS beam stop target. Lepton flavor (LF) conservation has been tested by searching for ueb via the detection reaction p( ueb,e+)n. No ueb signal from LF violating mu+ decays was identified. We extract upper limits of the branching ratio for the LF violating decay mu+ -> e+ ueb u compared to the Standard Model (SM) mu+ -> e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral distribution of ueb characterized by the Michel parameter rho=0.75 (0.0). These results improve earlier limits by one order of magnitude and restrict extensions of the SM in which ueb emission from mu+ decay is allowed with considerable strength. The decay mupdeb as source for the ueb signal observed in the LSND experiment can be excluded.
The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on $^{19}$F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of $^{19}$F of 65 g and 69 g respectively and a total exposure of 13.75 $pm$ 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c$^2$ new limits have been obtained on the spin-dependent cross section on $^{19}$F of $sigma_F$ = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of $sigma_p$ = 0.16 pb and $sigma_n$ = 2.60 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا