Do you want to publish a course? Click here

Direct observation of double exchange in ferromagnetic La$_{0.7}$Sr$_{0.3}$CoO$_3$ by broadband ellipsometry

90   0   0.0 ( 0 )
 Added by Adam Dubroka
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of our broadband ellipsometry measurements of the optical response of ferromagnetic La$_{0.7}$Sr$_{0.3}$CoO$_3$. Our data show that the ferromagnetic transition is accompanied by a transfer of optical spectral weight from an absorption band centered at 1.5 eV to a narrow component of the Drude-like peak. The associated reduction of the intraband kinetic energy is significantly larger than $k_{rm B}T_c$, confirming that the double exchange plays a major role in the ferromagnetism of doped cobaltites. In conjunction with results of recent theoretical studies, the temperature dependence of the Drude-like peak suggests that the double exchange is mediated by $t_{2g}$ orbitals.



rate research

Read More

Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75$pm$ 25 kA/m at 10 K in a La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO)/BiFeO$_3$ superlattice extending from the interface through several atomic layers of the BiFeO$_3$ (BFO). The induced magnetization in BFO is explained by density functional theory, where the size of bandgap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.
The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie temperature and spontaneous moments of cobalt are gradually suppressed - $T_C=130$ K, 55 K and 25 K and $m = 0.68 mu_B$, 0.34 $mu_B$ and 0.23 $mu_B$ for Nd$_{0.7}$Sr$_{0.3}$CoO$_3$, Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ and Nd$_{0.7}$Ca$_{0.3}$CoO$_3$, respectively. The moment reduction with respect to moment of the conventional ferromagnet La$_{0.7}$Sr$_{0.3}$CoO$_3$ ($T_C=230$ K, $m = 1.71 mu_B$) in so-called IS/LS state for Co$^{3+}$/Co$^{4+}$, was originally interpreted using phase-separation scenario. Based on the present results, mainly the analysis of Schottky peak originating in Zeeman splitting of the ground state Kramers doublet of Nd$^{3+}$, we find, however, that ferromagnetic phase in Nd$_{0.7}$Ca$_{0.3}$CoO$_3$ and likely also Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ is uniformly distributed over all sample volume, despite the severe drop of moments. The ground state of these compounds is identified with the LS/LS-related phase derived theoretically by Sboychakov textit{et al.} [Phys. Rev. B textbf{80}, 024423 (2009)]. The ground state of Nd$_{0.7}$Sr$_{0.3}$CoO$_3$ with an intermediate cobalt moment is inhomogeneous due to competing of LS/LS and IS/LS phases. In the theoretical part of the study, the crystal field split levels for $4f^3$ (Nd$^{3+}$), $4f^2$ (Pr$^{3+}$) and $4f^1$ (Ce$^{3+}$ or Pr$^{4+}$) are calculated and their magnetic characteristics are presented.
87 - S. B. Porter 2019
The magnetic dead layers in films a few nanometers thick are investigated for La$_{0.7}$Sr$_{0.3}$MnO$_3$ on (001)-oriented SrTiO$_3$ (STO), LaAlO$_3$ (LAO) and (LaAlO$_3$)$_{0.3}$(Sr$_2$TaAlO$_6$)$_{0.7}$ (LSAT) substrates. An anomalous moment found to persist above the Curie temperature of the La$_{0.7}$Sr$_{0.3}$MnO$_3$ films is not attributed to the films, but to oxygen vacancies at or near the surface of the substrate. The contribution to the moment from the substrate is as high as 20 $mu$B/nm$^2$ in the case of STO or LSAT. The effect is increased by adding an STO cap layer. Taking this d-zero magnetism into account, extrapolated magnetic dead layer thicknesses of 0.8 nm, 1.5 nm and 3.0 nm are found for the manganite films grown on LSAT, STO and LAO substrates, respectively. An STO cap layer eliminates the LSMO dead layer.
109 - K. Chen , C. Luo , B. B. Chen 2020
Charge transfer induced interfacial ferromagnetism and its impact on the exchange bias effect in La$_{0.7}$Sr$_{0.3}$MnO$_3$/NdNiO$_3$ correlated oxide heterostructures were investigated by soft x-ray absorption and x-ray magnetic circular dichroism spectra in a temperature range from 10 to 300 K. Besides the antiferromagnetic Ni$_3^+$ cations which are naturally part of the NdNiO$_3$ layer, Ni$_2^+$ ions are formed at the interface due to a charge transfer mechanism involving the Mn element of the adjacent layer. They exhibit a ferromagnetic behavior due to the exchange coupling to the Mn$_4^+$ ions in the La$_{0.7}$Sr$_{0.3}$MnO$_3$ layer. This can be seen as detrimental to the strength of the unidirectional anisotropy since a significant part of the interface does not contribute to the pinning of the ferromagnetic layer. By analyzing the line shape changes of the x-ray absorption at the Ni L$_{2,3}$ edges, the metal-insulator transition of the NdNiO$_3$ layer is resolved in an element specific manner. This phase transition is initiated at about 120 K, way above the paramagnetic to antiferromagnetic transition of NdNiO$_3$ layer which measured to be 50 K. Exchange bias and enhanced coercive fields were observed after field cooling the sample through the Neel temperature of the NdNiO$_3$ layer. Different from La$_{0.7}$Sr$_{0.3}$MnO$_3$/LaNiO$_3$, the exchange bias observed in La$_{0.7}$Sr$_{0.3}$MnO$_3$/NdNiO$_3$ is due to the antiferromagnetism of NdNiO$_3$ and the frustration at the interface. These results suggest that reducing the interfacial orbital hybridization may be used as a tunable parameter for the strength of the exchange bias effect in all-oxide heterostructures which exhibit a charge transfer mechanism.
We have used high-resolution Extended X-ray Absorption Fine-Structure and diffraction techniques to measure the local structure of strained La$_{0.5}$Sr$_{0.5}$CoO$_3$ films under compression and tension. The lattice mismatch strain in these compounds affects both the bond lengths and the bond angles, though the larger effect on the bandwidth is due to the bond length changes. The popular double exchange model for ferromagnetism in these compounds provides a correct qualitative description of the changes in Curie temperature $T_C$, but quantitatively underestimates the changes. A microscopic model for ferromagnetism that provides a much stronger dependence on the structural distortions is needed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا