Identifying nodal properties that are crucial for the dynamical robustness of multi-stable networks


Abstract in English

We investigate the collective dynamics of bi-stable elements connected in different network topologies, ranging from rings and small-world networks, to scale-free networks and stars. We estimate the dynamical robustness of such networks by introducing a variant of the concept of multi-node basin stability, which allows us to gauge the global stability of the dynamics of the network in response to local perturbations affecting a certain class of nodes of a system. We show that perturbing nodes with high closeness and betweeness-centrality significantly reduces the capacity of the system to return to the desired state. This effect is very pronounced for a star network which has one hub node with significantly different closeness/betweeness-centrality than all the peripheral nodes. In such a network, perturbation of the single hub node has the capacity to destroy the collective state. On the other hand, even when a majority of the peripheral nodes are strongly perturbed, the hub manages to restore the system to its original state, demonstrating the drastic effect of the centrality of the perturbed node on the dynamics of the network. Further, we explore explore Random Scale-Free Networks of bi-stable dynamical elements. We exploit the difference in the distribution of betweeness centralities, closeness centralities and degrees of the nodes in Random Scale-Free Networks with m=1 and m=2, to probe which centrality property most influences the robustness of the collective dynamics in these heterogeneous networks. Significantly, we find clear evidence that the betweeness centrality of the perturbed node is more crucial for dynamical robustness, than closeness centrality or degree of the node. This result is important in deciding which nodes to safeguard in order to maintain the collective state of this network against targeted localized attacks.

Download