Do you want to publish a course? Click here

Attacking Speaker Recognition With Deep Generative Models

135   0   0.0 ( 0 )
 Added by Rafael Valle
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the ability of generative adversarial networks (GANs) to synthesize spoofing attacks on modern speaker recognition systems. We first show that samples generated with SampleRNN and WaveNet are unable to fool a CNN-based speaker recognition system. We propose a modification of the Wasserstein GAN objective function to make use of data that is real but not from the class being learned. Our semi-supervised learning method is able to perform both targeted and untargeted attacks, raising questions related to security in speaker authentication systems.



rate research

Read More

Deep speaker embedding represents the state-of-the-art technique for speaker recognition. A key problem with this approach is that the resulting deep speaker vectors tend to be irregularly distributed. In previous research, we proposed a deep normalization approach based on a new discriminative normalization flow (DNF) model, by which the distributions of individual speakers are arguably transformed to homogeneous Gaussians. This normalization was demonstrated to be effective, but despite this remarkable success, we empirically found that the latent codes produced by the DNF model are generally neither homogeneous nor Gaussian, although the model has assumed so. In this paper, we argue that this problem is largely attributed to the maximum-likelihood (ML) training criterion of the DNF model, which aims to maximize the likelihood of the observations but not necessarily improve the Gaussianality of the latent codes. We therefore propose a new Maximum Gaussianality (MG) training approach that directly maximizes the Gaussianality of the latent codes. Our experiments on two data sets, SITW and CNCeleb, demonstrate that our new MG training approach can deliver much better performance than the previous ML training, and exhibits improved domain generalizability, particularly with regard to cosine scoring.
Research in speaker recognition has recently seen significant progress due to the application of neural network models and the availability of new large-scale datasets. There has been a plethora of work in search for more powerful architectures or loss functions suitable for the task, but these works do not consider what information is learnt by the models, apart from being able to predict the given labels. In this work, we introduce an environment adversarial training framework in which the network can effectively learn speaker-discriminative and environment-invariant embeddings without explicit domain shift during training. We achieve this by utilising the previously unused `video information in the VoxCeleb dataset. The environment adversarial training allows the network to generalise better to unseen conditions. The method is evaluated on both speaker identification and verification tasks using the VoxCeleb dataset, on which we demonstrate significant performance improvements over baselines.
Existing automatic music generation approaches that feature deep learning can be broadly classified into two types: raw audio models and symbolic models. Symbolic models, which train and generate at the note level, are currently the more prevalent approach; these models can capture long-range dependencies of melodic structure, but fail to grasp the nuances and richness of raw audio generations. Raw audio models, such as DeepMinds WaveNet, train directly on sampled audio waveforms, allowing them to produce realistic-sounding, albeit unstructured music. In this paper, we propose an automatic music generation methodology combining both of these approaches to create structured, realistic-sounding compositions. We consider a Long Short Term Memory network to learn the melodic structure of different styles of music, and then use the unique symbolic generations from this model as a conditioning input to a WaveNet-based raw audio generator, creating a model for automatic, novel music. We then evaluate this approach by showcasing results of this work.
The VoxCeleb Speaker Recognition Challenge 2019 aimed to assess how well current speaker recognition technology is able to identify speakers in unconstrained or `in the wild data. It consisted of: (i) a publicly available speaker recognition dataset from YouTube videos together with ground truth annotation and standardised evaluation software; and (ii) a public challenge and workshop held at Interspeech 2019 in Graz, Austria. This paper outlines the challenge and provides its baselines, results and discussions.
We held the second installment of the VoxCeleb Speaker Recognition Challenge in conjunction with Interspeech 2020. The goal of this challenge was to assess how well current speaker recognition technology is able to diarise and recognize speakers in unconstrained or `in the wild data. It consisted of: (i) a publicly available speaker recognition and diarisation dataset from YouTube videos together with ground truth annotation and standardised evaluation software; and (ii) a virtual public challenge and workshop held at Interspeech 2020. This paper outlines the challenge, and describes the baselines, methods used, and results. We conclude with a discussion of the progress over the first installment of the challenge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا