Do you want to publish a course? Click here

Log-concave sampling: Metropolis-Hastings algorithms are fast

107   0   0.0 ( 0 )
 Added by Raaz Dwivedi
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider the problem of sampling from a strongly log-concave density in $mathbb{R}^d$, and prove a non-asymptotic upper bound on the mixing time of the Metropolis-adjusted Langevin algorithm (MALA). The method draws samples by simulating a Markov chain obtained from the discretization of an appropriate Langevin diffusion, combined with an accept-reject step. Relative to known guarantees for the unadjusted Langevin algorithm (ULA), our bounds show that the use of an accept-reject step in MALA leads to an exponentially improved dependence on the error-tolerance. Concretely, in order to obtain samples with TV error at most $delta$ for a density with condition number $kappa$, we show that MALA requires $mathcal{O} big(kappa d log(1/delta) big)$ steps, as compared to the $mathcal{O} big(kappa^2 d/delta^2 big)$ steps established in past work on ULA. We also demonstrate the gains of MALA over ULA for weakly log-concave densities. Furthermore, we derive mixing time bounds for the Metropolized random walk (MRW) and obtain $mathcal{O}(kappa)$ mixing time slower than MALA. We provide numerical examples that support our theoretical findings, and demonstrate the benefits of Metropolis-Hastings adjustment for Langevin-type sampling algorithms.



rate research

Read More

Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overview of the current Metropolis-based samplings world.
MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper an approach to reduce the computational costs of such algorithms by a simple and universal divide-and-conquer strategy. The idea behind the generic acceleration is to divide the acceptance step into several parts, aiming at a major reduction in computing time that outranks the corresponding reduction in acceptance probability. The division decomposes the prior x likelihood term into a product such that some of its components are much cheaper to compute than others. Each of the components can be sequentially compared with a uniform variate, the first rejection signalling that the proposed value is considered no further, This approach can in turn be accelerated as part of a prefetching algorithm taking advantage of the parallel abilities of the computer at hand. We illustrate those accelerating features on a series of toy and realistic examples.
We propose a new kernel for Metropolis Hastings called Directional Metropolis Hastings (DMH) with multivariate update where the proposal kernel has state dependent covariance matrix. We use the derivative of the target distribution at the current state to change the orientation of the proposal distribution, therefore producing a more plausible proposal. We study the conditions for geometric ergodicity of our algorithm and provide necessary and sufficient conditions for convergence. We also suggest a scheme for adaptively update the variance parameter and study the conditions of ergodicity of the adaptive algorithm. We demonstrate the performance of our algorithm in a Bayesian generalized linear model problem.
The ability to generate samples of the random effects from their conditional distributions is fundamental for inference in mixed effects models. Random walk Metropolis is widely used to conduct such sampling, but such a method can converge slowly for medium dimension problems, or when the joint structure of the distributions to sample is complex. We propose a Metropolis Hastings (MH) algorithm based on a multidimensional Gaussian proposal that takes into account the joint conditional distribution of the random effects and does not require any tuning, in contrast with more sophisticated samplers such as the Metropolis Adjusted Langevin Algorithm or the No-U-Turn Sampler that involve costly tuning runs or intensive computation. Indeed, this distribution is automatically obtained thanks to a Laplace approximation of the original model. We show that such approximation is equivalent to linearizing the model in the case of continuous data. Numerical experiments based on real data highlight the very good performances of the proposed method for continuous data model.
Network representation learning (NRL) technique has been successfully adopted in various data mining and machine learning applications. Random walk based NRL is one popular paradigm, which uses a set of random walks to capture the network structural information, and then employs word2vec models to learn the low-dimensional representations. However, until now there is lack of a framework, which unifies existing random walk based NRL models and supports to efficiently learn from large networks. The main obstacle comes from the diverse random walk models and the inefficient sampling method for the random walk generation. In this paper, we first introduce a new and efficient edge sampler based on Metropolis-Hastings sampling technique, and theoretically show the convergence property of the edge sampler to arbitrary discrete probability distributions. Then we propose a random walk model abstraction, in which users can easily define different transition probability by specifying dynamic edge weights and random walk states. The abstraction is efficiently supported by our edge sampler, since our sampler can draw samples from unnormalized probability distribution in constant time complexity. Finally, with the new edge sampler and random walk model abstraction, we carefully implement a scalable NRL framework called UniNet. We conduct comprehensive experiments with five random walk based NRL models over eleven real-world datasets, and the results clearly demonstrate the efficiency of UniNet over billion-edge networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا