No Arabic abstract
In this paper we generalize the dynamical systems analysis of the cubic galileon model previously investigated in cite{rtgui} by including self-interaction potentials beyond the exponential one. It will be shown that, consistently with the results of cite{rtgui}, the cubic self-interaction of the galileon vacuum appreciably modifies the late-time cosmic dynamics by the existence of a phantom-like attractor (among other super-accelerated solutions that are not of interest in the present investigation). In contrast, in the presence of background matter the late-time cosmic dynamics remains practically the same as in the standard quintessence scenario. This means that we can not recover the cubic galileon vacuum continuously from the more general cubic quintessence with background matter, by setting to zero the matter energy density (and the pressure). This happens to be a kind of cosmological vDVZ discontinuity that can be evaded by means of the cosmological version of the Vainshtein screening mechanism.
Recently a cubic Galileon cosmological model was derived by the assumption that the field equations are invariant under the action of point transformations. The cubic Galileon model admits a second conservation law which means that the field equations form an integrable system. The analysis of the critical points for this integrable model is the main subject of this work. To perform the analysis, we work on dimensionless variables different from that of the Hubble normalization. New critical points are derived while the gravitational effects which follow from the cubic term are studied.
Cubic Galileon massive gravity is a development of de Rham-Gabadadze-Tolly (dRGT) massive gravity theory is which the space of the Stueckelberg field is broken. We consider the cubic Galileon term as a scalar field coupled to the graviton filed. We present a detailed study of the cosmological aspects of this theory of gravity. We analyze self-accelerating solutions of the background equations of motion to explain the accelerated expansion of the Universe. Exploiting the latest Union2 Type Ia Supernovea (SNIa) dataset, which consists of 557 SNIa, we show that cubic Galileon massive gravity theory is consistent with the observations. We also examine the tensor perturbations within the framework of this model and find an expression for the dispersion relation of gravitational waves, and show that it is consistent with the observational results.
In this paper we apply the tools of the dynamical systems theory in order to uncover the whole asymptotic structure of the vacuum interactions of a galileon model with a cubic derivative interaction term. It is shown that, contrary to what occurs in the presence of background matter, the galileon interactions of vacuum appreciably modify the late-time cosmic dynamics. In particular, a local late-time attractor representing phantom behavior arises which is inevitably associated with a big rip singularity. It seems that the gravitational interactions of the background matter with the galileon screen the effects of the gravitational self-interactions of the galileon, thus erasing any potential modification of the late-time dynamics by the galileon vacuum processes. Unlike other galileon models inspired in the DGP scenario, self-accelerating solutions do not arise in this model.
In this paper, we present the cosmological scenario obtained from $f(R,T)$ gravity by using an exponential dependence on the trace of the energy-momentum tensor. With a numerical approach applied to the equations of motion, we show several precise fits and the respective cosmological consequences. As a matter of completeness, we also analyzed cosmological scenarios where this new version of $f(R,T)$ is coupled with a real scalar field. In order to find analytical cosmological parameters, we used a slow-roll approximation for the evolution of the scalar field. This approximation allowed us to derived the Hubble and the deceleration parameters whose time evolutions describe the actual phase of accelerated expansion, and corroborate with our numerical investigations. Therefore, the analytical parameters unveil the viability of this proposal for $f(R,T)$ in the presence of an inflaton field.
We investigate a cosmological model in which dark energy identified with the vacuum energy which is running and decaying. In this model vacuum is metastable and decays into a bare (true) vacuum. This decaying process has a quantum nature and is described by tools of the quantum decay theory of unstable systems. We have found formulas for an asymptotic behavior of the energy density of dark energy in the form of a series of inverse powers of the cosmological time. We investigate the dynamics of FRW models using dynamical system methods as well as searching for exact solutions. From dynamical analysis we obtain different evolutional scenarios admissible for all initial conditions. For the interpretation of the dynamical evolution caused by the decay of the quantum vacuum we study the thermodynamics of the apparent horizon of the model as well as the evolution of the temperature. For the early Universe, we found that the quantum effects modified the evolution of the temperature of the Universe. In our model the adiabatic approximation is valid and the quantum vacuum decay occurs with an adequate unknown particle which constitutes quantum vacuum. We argue that the late-time evolution of metastable energy is the holographic dark energy.