2-dimensional semiconductors pave the way towards dopant based quantum computing


Abstract in English

Since the 1998 proposal to build a quantum computer using dopants in semiconductors as qubits, much progress has been achieved on semiconductors nano fabrication and control of charge and spins in single dopants. However, an important problem remains, which is the control at the atomic scale of the dopants positioning. We propose to circumvent this problem by using 2 dimensional materials as hosts. Since the first isolation of graphene in 2004, the number of new 2D materials with favorable properties for electronics has been growing. Dopants in 2 dimensional systems are more tightly bound and potentially easier to position and manipulate. Considering the properties of currently available 2D materials, we access the feasibility of such proposal in terms of the manipulability of isolated dopants (for single qubit operations) and dopant pairs (for two qubit operations). Our results indicate that a wide variety of 2D materials may perform at least as well as the currently studied bulk host for donor qubits.

Download