Do you want to publish a course? Click here

Evidence for radial variations in the stellar mass-to-light ratio of massive galaxies from weak and strong lensing

119   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Initial Mass Function (IMF) for massive galaxies can be constrained by combining stellar dynamics with strong gravitational lensing. However, this method is limited by degeneracies between the density profile of dark matter and the stellar mass-to-light ratio. In this work we reduce this degeneracy by combining weak lensing together with strong lensing and stellar kinematics. Our analysis is based on two galaxy samples: 45 strong lenses from the SLACS survey and 1,700 massive quiescent galaxies from the SDSS main spectroscopic sample with weak lensing measurements from the Hyper Suprime-Cam survey. We use a Bayesian hierarchical approach to jointly model all three observables. We fit the data with models of varying complexity and show that a model with a radial gradient in the stellar mass-to-light ratio is required to simultaneously describe both galaxy samples. This result is driven by a subset of strong lenses with very steep total density profile, that cannot be fitted by models with no gradient. Our measurements are unable to determine whether $M_*/L$ gradients are due to variations in stellar population parameters at fixed IMF, or to gradients in the IMF itself. The inclusion of $M_*/L$ gradients decreases dramatically the inferred IMF normalisation, compared to previous lensing-based studies, with the exact value depending on the assumed dark matter profile. The main effect of strong lensing selection is to shift the stellar mass distribution towards the high mass end, while the halo mass and stellar IMF distribution at fixed stellar mass are not significantly affected.



rate research

Read More

We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies (ETGs). We combine pixel-based modelling of multiband HST/ACS imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a gNFW profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio $Upsilon_{star}$ for the baryonic mass, we infer distributions for $Upsilon_{star}$ consistent with IMFs that are heavier than the Milky Ways (with a global mean mismatch parameter relative to a Chabrier IMF $mu_{alpha c} = 1.80 pm 0.14$) and halo inner density slopes which span a large range but are generally cuspier than the dark-matter-only prediction ($mu_{gamma} = 2.01_{-0.22}^{+0.19}$). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mas-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.
357 - Kenneth C. Wong 2017
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which was selected by its high projected concentration of luminous red galaxies and contains the massive cluster Zwicky 1953. Using Subaru/Suprime-Cam $BVR_{c}I_{c}i^{prime}z^{prime}$ imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at $z = 0.3774$ and a smaller foreground halo at $z = 0.2713$. We then add a strong lensing constraint from a multiply-imaged galaxy in the imaging data with a photometric redshift of $z approx 5.03$. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that use only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic such that one image is a highly-magnified fold arc, which could be used to probe the source galaxys structure at ultra-high spatial resolution ($< 30$ pc). We calculate the mass of the primary cluster to be $mathrm{M_{vir}} = 2.93_{-0.65}^{+0.71} times 10^{15}~mathrm{M_{odot}}$ with a concentration of $mathrm{c_{vir}} = 3.46_{-0.59}^{+0.70}$, consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.
We investigate how strong gravitational lensing can test contemporary models of massive elliptical (ME) galaxy formation, by combining a traditional decomposition of their visible stellar distribution with a lensing analysis of their mass distribution. As a proof of concept, we study a sample of three ME lenses, observing that all are composed of two distinct baryonic structures, a `red central bulge surrounded by an extended envelope of stellar material. Whilst these two components look photometrically similar, their distinct lensing effects permit a clean decomposition of their mass structure. This allows us to infer two key pieces of information about each lens galaxy: (i) the stellar mass distribution (without invoking stellar populations models) and (ii) the inner dark matter halo mass. We argue that these two measurements are crucial to testing models of ME formation, as the stellar mass profile provides a diagnostic of baryonic accretion and feedback whilst the dark matter mass places each galaxy in the context of LCDM large scale structure formation. We also detect large rotational offsets between the two stellar components and a lopsidedness in their outer mass distributions, which hold further information on the evolution of each ME. Finally, we discuss how this approach can be extended to galaxies of all Hubble types and what implication our results have for studies of strong gravitational lensing.
We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their halos, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, $10.3 < log [M_*/M_odot] < 11.6$, we find that passive central galaxies have halos that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds $3sigma$ for $log [M_*/M_odot] > 10.7$. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type-dependence.
We describe the luminosity function, based on Sersic fits to the light profiles, of CMASS galaxies at z ~ 0.55. Compared to previous estimates, our Sersic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sersic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ~ 0.1. This implies a significant revision of the high mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k+e corrections. In turn, these depend on the assumed age of the population. Applying k+e corrections taken from fitting the models of Maraston et al. (2009) to the colors of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا