Do you want to publish a course? Click here

Convergence of solutions for the fractional Cahn-Hilliard system

151   0   0.0 ( 0 )
 Added by Giulio Schimperna
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

This paper deals with the Cauchy-Dirichlet problem for the fractional Cahn-Hilliard equation. The main results consist of global (in time) existence of weak solutions, characterization of parabolic smoothing effects (implying under proper condition eventual boundedness of trajectories), and convergence of each solution to a (single) equilibrium. In particular, to prove the convergence result, a variant of the so-called L ojasiewicz-Simon inequality is provided for the fractional Dirichlet Laplacian and (possibly) non-analytic (but $C^1$) nonlinearities.



rate research

Read More

We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After setting a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.
We consider a diffuse interface model for phase separation of an isothermal incompressible binary fluid in a Brinkman porous medium. The coupled system consists of a convective Cahn-Hilliard equation for the phase field $phi$, i.e., the difference of the (relative) concentrations of the two phases, coupled with a modified Darcy equation proposed by H.C. Brinkman in 1947 for the fluid velocity $mathbf{u}$. This equation incorporates a diffuse interface surface force proportional to $phi abla mu$, where $mu$ is the so-called chemical potential. We analyze the well-posedness of the resulting Cahn-Hilliard-Brinkman (CHB) system for $(phi,mathbf{u})$. Then we establish the existence of a global attractor and the convergence of a given (weak) solution to a single equilibrium via {L}ojasiewicz-Simon inequality. Furthermore, we study the behavior of the solutions as the viscosity goes to zero, that is, when the CHB system approaches the Cahn-Hilliard-Hele-Shaw (CHHS) system. We first prove the existence of a weak solution to the CHHS system as limit of CHB solutions. Then, in dimension two, we estimate the difference of the solutions to CHB and CHHS systems in terms of the viscosity constant appearing in CHB.
We study a diffuse interface model describing the evolution of the flow of a binary fluid in a Hele-Shaw cell. The model consists of a Cahn-Hilliard-Darcy (CHD) type system with transport and mass source. A relevant physical application is related to tumor growth dynamics, which in particular justifies the occurrence of a mass inflow. We study the initial-boundary value problem for this model and prove global existence and uniqueness of strong solutions in two space dimensions as well as local existence in three space dimensions.
We give a detailed study of the infinite-energy solutions of the Cahn-Hilliard equation in the 3D cylindrical domains in uniformly local phase space. In particular, we establish the well-posedness and dissipativity for the case of regular potentials of arbitrary polynomial growth as well as for the case of sufficiently strong singular potentials. For these cases, we prove the further regularity of solutions and the existence of a global attractor. For the cases where we have failed to prove the uniqueness (e.g., for the logarithmic potentials), we establish the existence of the trajectory attractor and study its properties.
The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated to the Ginzburg-Landau free energy with physically relevant logarithmic potential. This model is studied in bounded smooth domain in R^d, d=2 and d=3, and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak solutions and the existence and uniqueness of global strong solutions originating from an initial velocity u_0 in V, namely u_0 in H_0^1 such that div u_0=0. In addition, we prove further regularity properties and the validity of the instantaneous separation property. In a three-dimensional domain, we show the existence and uniqueness of local strong solutions with initial velocity u_0 in V.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا