Do you want to publish a course? Click here

ALMA reveals molecular cloud N55 in the Large Magellanic Cloud as a site of massive star formation

92   0   0.0 ( 0 )
 Added by Neelamkodan Naslim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the molecular cloud properties of N55 in the Large Magellanic Cloud using $^{12}$CO(1-0) and $^{13}$CO(1-0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have YSOs show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the $^{12}$CO and $^{13}$CO emissions. These mass estimates lead to the conclusion that, (a) the clumps are in self-gravitational virial equilibrium, and (b) the $^{12}$CO(1-0)-to-H$_2$ conversion factor, X$_{rm CO}$, is 6.5$times$10$^{20}$cm$^{-2}$(K km s$^{-1}$)$^{-1}$. This CO-to-H$_2$ conversion factor for N55 clumps is measured at a spatial scale of $sim$0.67 pc, which is about two times higher than the X$_{rm CO}$ value of Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200M$_{odot}$, separating the low-mass end from the high-mass end. The low-mass end of the $^{12}$CO mass spectrum is fitted with a power law of index 0.5$pm$0.1, while for $^{13}$CO it is fitted with a power law index 0.6$pm$0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0$pm$0.3 for $^{12}$CO, and with 2.5$pm$0.4 for $^{13}$CO. This power-law behavior of the core mass function in N55 is consistent with many Galactic clouds.



rate research

Read More

We present the results of Atacama Large Millimeter/submillimeter Array (ALMA) observation in $^{12}$CO(1-0) emission at 0.58 $times$ 0.52 pc$^2$ resolution toward the brightest HII region N66 of the Small Magellanic Cloud (SMC). The $^{12}$CO(1-0) emission toward the north of N66 reveals the clumpy filaments with multiple velocity components. Our analysis shows that a blueshifted filament at a velocity range 154.4-158.6 km s$^{-1}$ interacts with a redshifted filament at a velocity 158.0-161.8 km s$^{-1}$. A third velocity component in a velocity range 161-165.0 km s$^{-1}$ constitutes hub-filaments. An intermediate-mass young stellar object (YSO) and a young pre-main sequence star cluster have hitherto been reported in the intersection of these filaments. We find a V-shape distribution in the position-velocity diagram at the intersection of two filaments. This indicates the physical association of those filaments due to a cloud-cloud collision. We determine the collision timescale $sim$ 0.2 Myr using the relative velocity ($sim$ 5.1 km s$^{-1}$) and displacement ($sim$ 1.1 pc) of those interacting filaments. These results suggest that the event occurred at about 0.2 Myr ago and triggered the star formation, possibly an intermediate-mass YSO. We report the first observational evidence for a cloud-cloud collision that triggers star formation in N66N of the low metallicity $sim$0.2 Z$_{odot}$ galaxy, the SMC, with similar kinematics as in N159W-South and N159E of the Large Magellanic Cloud.
We present the results of high spatial resolution HCO$^{+}$($1-0$) and HCN($1-0$) observations of N55 south region (N55-S) in the Large Magellanic Cloud (LMC), obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). N55-S is a relatively less extreme star-forming region of the LMC characterized by a low radiation field. We carried out a detailed analysis of the molecular emission to investigate the relation between dense molecular clumps and star formation in the quiescent environment of N55-S. We detect ten molecular clumps with significant HCO$^{+}(1-0)$ emission and eight with significant HCN($1-0$) emission, and estimate the molecular clump masses by virial and local thermodynamic equilibrium analysis. All identified young stellar objects (YSOs) in the N55-S are found to be near the HCO$^{+}$ and HCN emission peaks showing the association of these clumps with recent star formation activity. The molecular clumps that have associated YSOs show relatively larger linewidths and masses than those without YSOs. We compare the clump properties of the N55-S with those of other giant molecular clouds (GMCs) in the LMC and find that N55-S clumps possess similar size but relatively lower linewidth and larger HCN/HCO$^{+}$(1$-$0) flux ratio. These results can be attributed to the low radiation field in N55-S resulted by relatively low star formation activity compared to other active star-forming regions like 30Doradus-10 and N159. The dense gas fraction of N55-S is $sim$ 0.025, lower compared to other GMCs of the LMC supporting the low star formation efficiency of this region.
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density regions in $^{13}$CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the Planck cold cloud or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (leaves) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.
We investigate the Hi envelope of the young, massive GMCs in the star-forming regions N48 and N49, which are located within the high column density Hi ridge between two kpc-scale supergiant shells, LMC 4 and LMC 5. New long-baseline Hi 21 cm line observations with the Australia Telescope Compact Array (ATCA) were combined with archival shorter baseline data and single dish data from the Parkes telescope, for a final synthesized beam size of 24.75 by 20.48, which corresponds to a spatial resolution of ~ 6 pc in the LMC. It is newly revealed that the Hi gas is highly filamentary, and that the molecular clumps are distributed along filamentary Hi features. In total 39 filamentary features are identified and their typical width is ~ 21 (8-49) [pc]. We propose a scenario in which the GMCs were formed via gravitational instabilities in atomic gas which was initially accumulated by the two shells and then further compressed by their collision. This suggests that GMC formation involves the filamentary nature of the atomic medium.
361 - K. M. Desai 2010
It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud to search for associated young stellar objects (YSOs) and molecular clouds. We find seven SNRs associated with both YSOs and molecular clouds, three SNRs associated with YSOs but not molecular clouds, and eight SNRs near molecular clouds but not associated with YSOs. Among the 10 SNRs associated with YSOs, the association between the YSOs and SNRs can be either rejected or cannot be convincingly established for eight cases. Only two SNRs have YSOs closely aligned along their rims; however, the time elapsed since the SNR began to interact with the YSOs natal clouds is much shorter than the contraction timescales of the YSOs, and thus we do not see any evidence of SNR-triggered star formation in the LMC. The 15 SNRs that are near molecular clouds may trigger star formation in the future when the SNR shocks have slowed down to <45 km/s. We discuss how SNRs can alter the physical properties and abundances of YSOs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا