Do you want to publish a course? Click here

Chronology of the three-body dissociation of $^8$He

349   0   0.0 ( 0 )
 Added by F. Miguel Marques
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The space and time configurations of the dissociation of $^8$He into $^6$He+$n$+$n$, on C and Pb targets, have been explored simultaneously for the first time. The final-state interactions in the $n$-$n$ and $^6$He-$n$ channels are successfully described within a model that considers independent emission of neutrons from a Gaussian volume with a given lifetime. The dissociation on C target exhibits a dominant sequential decay through the ground state of $^7$He, consistent with neutrons being emitted from a Gaussian volume of $r_{nn}^{rm{rms}}=7.3pm0.6$~fm with a $n$-$n$ delay in the sequential channel of $1400pm400$~fm/$c$, in agreement with the lifetime of $^7$He. The lower-statistics data on Pb target correspond mainly to direct breakup, and are well described using the $n$-$n$ volume measured, without any $n$-$n$ delay. The validity of the phenomenological model used is discussed.

rate research

Read More

The reaction mechanisms of the two-neutron transfer reaction $^{12}$C($^6$He,$^4$He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 2$^+_2$ 8.32 MeV state in $^{14}$C, using a realistic 3-body $^6$He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.
The measured inclusive $^6$He and $^4$He production cross sections of G. Marqu{i}nez-Dur{a}n {em et al.}, Phys. Rev. C {bf 98}, 034615 (2018) are reexamined and the conclusions concerning the relative importance of 1n and 2n transfer to the production of $^6$He arising from the interaction of a 22 MeV $^8$He beam with a $^{208}$Pb target revised. A consideration of the kinematics of the 2n-stripping reaction when compared with the measured $^6$He total energy versus angle spectrum places strict limits on the allowed excitation energy of the $^{210}$Pb residual, so constraining distorted wave Born approximation calculations that the contribution of the 2n stripping process to the inclusive $^6$He production can only be relatively small. It is therefore concluded that the dominant $^6$He production mechanism must be 1n stripping followed by decay of the $^7$He ejectile. Based on this result we present strong arguments in favor of direct, one step four-neutron (4n) stripping as the main mechanism for $^4$He production.
The interaction of an $E/A$=57.6-MeV $^{17}$Ne beam with a Be target was used to populate levels in $^{16}$Ne following neutron knockout reactions. The decay of $^{16}$Ne states into the three-body $^{14}$O+$p$+$p$ continuum was observed in the High Resolution Array (HiRA). For the first time for a 2p emitter, correlations between the momenta of the three decay products were measured with sufficient resolution and statistics to allow for an unambiguous demonstration of their dependence on the long-range nature of the Coulomb interaction. Contrary to previous experiments, the intrinsic decay width of the $^{16}$Ne ground state was found to be narrow ($Gamma<60$~keV), consistent with theoretical estimates.
The root-mean-square (rms) nuclear charge radius of ^8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of ^6He was measured to be 2.068(11) fm, in excellent agreement with a previous result. The significant reduction in charge radius from ^6He to ^8He is an indication of the change in the correlations of the excess neutrons and is consistent with the ^8He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.
316 - I. Ciepa{l} , G. Khatri , K. Bodek 2019
A set of differential cross section of the three-body $^{2}$H($d$,$dp$)$n$ breakup reaction at 160 MeV deuteron beam energy are presented for 147 kinematically complete configurations near the quasi-free scattering kinematics. The experiment was performed at KVI in Groningen, the Netherlands using the BINA detector. The cross-section data have been normalized to the $^{2}$H($d$,$d$)$^{2}$H elastic scattering cross section. The data are compared to the recent single-scattering approximation (SSA) calculations for three-cluster breakup in deuteron-deuteron collisions. Confronting the SSA predictions with the experimental data shows that SSA provides the correct order of magnitude of the cross-section data. The studied energy is probably too low to meet the SSA assumptions which prevents better accuracy of the description.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا