Do you want to publish a course? Click here

Direct detection and characterization of M-dwarf planets using light echoes

112   0   0.0 ( 0 )
 Added by William B. Sparks
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exoplanets orbiting M dwarf stars are a prime target in the search for life in the Universe. M dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planets detectability. The planets light echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense LyAlpha and LyBeta flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that under favorable circumstances, echo detection is possible.



rate research

Read More

We use the Met Office Unified Model to explore the potential of a tidally locked M dwarf planet, nominally Proxima Centauri b irradiated by a quiescent version of its host star, to sustain an atmospheric ozone layer. We assume a slab ocean surface layer, and an Earth-like atmosphere of nitrogen and oxygen with trace amounts of ozone and water vapour. We describe ozone chemistry using the Chapman mechanism and the hydrogen oxide (HO$_x$, describing the sum of OH and HO$_2$) catalytic cycle. We find that Proxima Centauri radiates with sufficient UV energy to initialize the Chapman mechanism. The result is a thin but stable ozone layer that peaks at 0.75 parts per million at 25 km. The quasi-stationary distribution of atmospheric ozone is determined by photolysis driven by incoming stellar radiation and by atmospheric transport. Ozone mole fractions are smallest in the lowest 15 km of the atmosphere at the sub-stellar point and largest in the nightside gyres. Above 15 km the ozone distribution is dominated by an equatorial jet stream that circumnavigates the planet. The nightside ozone distribution is dominated by two cyclonic Rossby gyres that result in localized ozone hotspots. On the dayside the atmospheric lifetime is determined by the HO$_x$ catalytic cycle and deposition to the surface, with nightside lifetimes due to chemistry much longer than timescales associated with atmospheric transport. Surface UV values peak at the substellar point with values of 0.01 W/m$^2$, shielded by the overlying atmospheric ozone layer but more importantly by water vapour clouds.
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf ($d=22$ pc, $M_star = 0.39$ M$_odot$, $R_star = 0.38$ R$_odot$), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 days. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be $1.58 pm 0.26$, $6.15 pm 0.37$, and $4.78 pm 0.43$ M$_oplus$, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the `radius valley -- a region in the radius-period diagram with relatively few members, which has been interpreted as a consequence of atmospheric photo-evaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf ($T_mathrm{eff} < 4000$ K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photo-evaporation and core-powered mass loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
199 - O. Cohen , J.J. Drake , A. Glocer 2014
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic (MHD) models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvenic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvenic sectors, while no bow shock forms in the sub-Alfvenic sectors. The planets reside most of the time in the sub-Alfvenic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the planetary interaction with the stellar wind. For the steady-state solution, the heating is about 0.1-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport.
110 - David Russell 2013
A planetary mass scale and a system of composition codes are presented for describing the geophysical characteristics of exoplanets and Solar System planets, dwarf planets, and spherical moons. The composition classes characterize the rock, ice, and gas properties of planetary bodies. The planetary mass scale includes five mass classes with upper and lower mass limits derived from recent studies of the exoplanet mass radius and mass density relationships and the physical characteristics of planets, dwarf planets, and spherical moons in the Solar System. The combined mass and composition codes provide a geophysical classification that allows for comparison of the global mass and composition characteristics of exoplanets with the Solar Systems planets, dwarf planets, and spherical moons. The system is flexible and can be combined with additional codes characterizing other physical, dynamical, or biological characteristics of planets.
We present new radial velocity measurements of eight stars secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory allowing the detection and characterization of new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes between 6.7 and 9.6; the planets have minimum masses M_p sin i between 0.4 to 3.8 M_Jup and orbital periods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD143105, HIP109600, HD35759, HIP109384, HD220842, and HD12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP65407, allows the discovery of two giant planets, just outside the 12:5 resonance in weak mutual interaction. The last star, HD141399, was already known to host a four-planetary system; our additional data and analyses allow new constraints to be put on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planetary systems. HD143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted despite this is not a transiting system. The giant planets HIP109600b, HIP109384b, and HD141399c are located in the habitable zone of their host star.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا