Do you want to publish a course? Click here

Monolithic quantum-dot distributed feedback laser array on silicon

101   0   0.0 ( 0 )
 Added by Yi Wang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed feedback (DFB) laser array fabricated in InAs/GaAs quantum-dot (QD) gain material epitaxially grown on silicon. CW threshold currents as low as 12 mA and single-mode side mode suppression ratios (SMSRs) as high as 50 dB have been achieved from individual devices in the array. The laser array, compatible with state-of-the-art coarse wavelength division multiplexing (CWDM) systems, has a well-aligned channel spacing of 20 0.2 nm and exhibits a record wavelength coverage range of 100 nm, the full span of the O-band. These results indicate that, for the first time, the performance of lasers epitaxially grown on silicon is elevated to a point approaching real-world CWDM applications, demonstrating the great potential of this technology.



rate research

Read More

141 - Chao Xiang , Junqiu Liu , Joel Guo 2021
Silicon photonics enables wafer-scale integration of optical functionalities on chip. A silicon-based laser frequency combs could significantly expand the applications of silicon photonics, by providing integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent LiDAR, or photonics-assisted signal processing. Here, we report on heterogeneously integrated laser soliton microcombs combining both InP/Si semiconductor lasers and ultralow-loss silicon nitride microresonators on monolithic silicon substrate. Thousands of devices are produced from a single wafer using standard CMOS techniques. Using on-chip electrical control of the microcomb-laser relative optical phase, these devices can output single-soliton microcombs with 100 GHz repetition rate. Our approach paves the way for large-volume, low-cost manufacturing of chip-based frequency combs for next-generation high-capacity transceivers, datacenters, space and mobile platforms.
164 - M. Schafer 2021
Understanding and manipulation of the laser processing quality during the ablation of solids have crucial importance from fundamental and industrial perspectives. Here we have studied the effect of external magnetic field on the micro-material processing of silicon by ultrashort laser pulses. It was found experimentally that such a field directed along the laser beam improves the quality and efficiency of the material removal. Additionally, we observe that the formation of laser-induced periodic surface structures (LIPSS) in a multi-pulse regime is affected by the external magnetic field. Our results open a route towards efficient and controllable ultrafast laser micromachining.
In-volume ultrafast laser direct writing of silicon is generally limited by strong nonlinear propagation effects preventing the initiation of modifications. By employing a triple-optimization procedure in the spectral, temporal and spatial domains, we demonstrate that modifications can be repeatably produced inside silicon. Our approach relies on irradiation at $approx 2$-$mu$m wavelength with temporally-distorted femtosecond pulses. These pulses are focused in a way that spherical aberrations of different origins counterbalance, as predicted by point spread function analyses and in good agreement with nonlinear propagation simulations. We also establish the laws governing modification growth on a pulse-to-pulse basis, which allows us to demonstrate transverse inscription inside silicon with various line morphologies depending on the irradiation conditions. We finally show that the production of single-pulse repeatable modifications is a necessary condition for reliable transverse inscription inside silicon.
Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compatibility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our recently developed hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si3N4 in SiO2) circuits, to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around 1.55 um wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain operation, laser frequency comb generation, and present work towards realizing a visible-light hybrid integrated diode laser.
Plasmonic distributed-feedback lasers based on a two-dimensional periodic array of metallic nanostructures are the main candidate for nanoscale sources of coherent electromagnetic field. Strong localization of the electromagnetic field and the large radiation surface are good opportunities for achieving an ultrashort response time to the external actions and creating beam directionality. At the same time, the investigation of such a system is a challenging problem. In this paper, we present an exhaustive study of the operation of a two-dimensional plasmonic distributed-feedback laser. We show that the complex structure of the modes of a periodic plasmonic array and the nonlinear interaction between the modes through the active medium lead to a new effect, namely, mode cooperation. Mode cooperation is manifested as the generation of the modes in an allowed band with a high threshold instead of modes localized near the band gap with a low threshold. Suppression of lasing of the modes at the edge of the band gap results in widening of the radiation pattern above the generation threshold. This paves the way for effective control and manipulation of the radiation pattern of nanoscale systems, which is of great importance for applications in spectroscopy and optoelectronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا