No Arabic abstract
Semiconductor Bi$_2$O$_2$Se nanolayers of high crystal quality have been realized via epitaxial growth. These two-dimensional (2D) materials possess excellent electron transport properties with potential application in nanoelectronics. It is also strongly expected that the 2D Bi$_2$O$_2$Se nanolayers could be of an excellent material platform for developing spintronic and topological quantum devices, if the presence of strong spin-orbit interaction in the 2D materials can be experimentally demonstrated. Here, we report on experimental determination of the strength of spin-orbit interaction in Bi$_2$O$_2$Se nanoplates through magnetotransport measurements. The nanoplates are epitaxially grown by chemical vapor deposition and the magnetotransport measurements are performed at low temperatures. The measured magnetoconductance exhibits a crossover behavior from weak antilocalization to weak localization at low magnetic fields with increasing temperature or decreasing back gate voltage. We have analyzed this transition behavior of the magnetoconductance based on an interference theory which describes the quantum correction to the magnetoconductance of a 2D system in the presence of spin-orbit interaction. Dephasing length and spin relaxation length are extracted from the magnetoconductance measurements. Comparing to other semiconductor nanostructures, the extracted relatively short spin relaxation length of ~150 nm indicates the existence of strong spin-orbit interaction in Bi$_2$O$_2$Se nanolayers.
We report on phase-coherent transport studies of a Bi$_2$O$_2$Se nanoplate and on observation of universal conductance fluctuations and spin-orbit interaction induced reduction in fluctuation amplitude in the nanoplate. Thin-layered Bi$_2$O$_2$Se nanoplates are grown by chemical vapor deposition (CVD) and transport measurements are made on a Hall-bar device fabricated from a CVD-grown nanoplate. The measurements show weak antilocalization at low magnetic fields at low temperatures, as a result of spin-orbit interaction, and a crossover toward weak localization with increasing temperature. Temperature dependences of characteristic transport lengths, such as spin relaxation length, phase coherence length, and mean free path, are extracted from the low-field measurement data. Universal conductance fluctuations are visible in the low-temperature magnetoconductance over a large range of magnetic fields and the phase coherence length extracted from the autocorrelation function is in consistence with the result obtained from the weak localization analysis. More importantly, we find a strong reduction in amplitude of the universal conductance fluctuations and show that the results agree with the analysis assuming strong spin-orbit interaction in the Bi$_2$O$_2$Se nanoplate.
The electronic structure and magnetic properties of the strongly correlated material La$_2$O$_3$Fe$_2$Se$_2$ are studied by using both the density function theory plus $U$ (DFT+$U$) method and the DFT plus Gutzwiller (DFT+G) variational method. The ground-state magnetic structure of this material obtained with DFT+$U$ is consistent with recent experiments, but its band gap is significantly overestimated by DFT+$U$, even with a small Hubbard $U$ value. In contrast, the DFT+G method yields a band gap of 0.1 - 0.2 eV, in excellent agreement with experiment. Detailed analysis shows that the electronic and magnetic properties of of La$_2$O$_3$Fe$_2$Se$_2$ are strongly affected by charge and spin fluctuations which are missing in the DFT+$U$ method.
Structural, magnetic and magnetotransport properties of (Bi$_{1-x}$Eu$_x$)$_2$Se$_3$ thin films have been studied experimentally as a function of Eu content. The films were synthesized by MBE. It is demonstrated that Eu distribution is not uniform, it enter quint-layers forming inside them plain (pancake-like) areas containing Eu atoms, which sizes and concentration increase with the growth of Eu content. Positive magnetoresistance related to the weak antilocalization was observed up to 15K. The antilocalization was not followed by weak localization as theory predicts for nontrivial topological states. Surprisingly, the features of antilocalization were seen even at Eu content $x$ $=$ 0.21. With the increase of Eu content the transition to ferromagnetic state occurs at $x$ about 0.1 and with the Curie temperature $approx$ 8K, that rises up to 64K for $x$ $=$ 0.21. At temperatures above 1-2 K, the dephasing length is proportional to $T^{-1/2}$ indicating the dominant contribution of inelastic $e-e$ scattering into electron phase breaking. However, at low temperatures the dephasing length saturates, that could be due to the scattering on magnetic ions.
Bi$_2$O$_2$Se is a promising material for next-generation semiconducting electronics. It exhibits premature metallicity on the introduction of a tiny amount of electrons, the physics behind which remains elusive. Here we report on transport and dielectric measurements in Bi$_2$O$_2$Se single crystals at various carrier densities. The temperature-dependent resistivity ($rho$) indicates a smooth evolution from the semiconducting to the metallic state. The critical concentration for the metal-insulator transition (MIT) to occur is extraordinarily low ($n_textrm{c}sim10^{16}$ cm$^{-3}$). The relative permittivity of the insulating sample is huge ($epsilon_textrm{r}approx155(10)$) and varies slowly with temperature. Combined with the light effective mass, a long effective Bohr radius ($a_textrm{B}^*approx36(2)$ $textrm{nm}$) is derived, which provides a reasonable interpretation of the metallic prematurity according to Motts criterion for MITs. The high electron mobility ($mu$) at low temperatures may result from the screening of ionized scattering centers due to the huge $epsilon_textrm{r}$. Our findings shed light on the electron dynamics in two dimensional (2D) Bi$_2$O$_2$Se devices.
We discover that, in the layered semiconductor Bi$_2$O$_2$Se, an incipient ferroelectric transition endows the material a surprisingly large dielectric permittivity, providing it with a robust protection against mobility degradation by extrinsic Coulomb scattering. Based on state-of-the-art first-principles calculations, we show that the low-temperature electron mobility of Bi$_2$O$_2$Se, taking into account both electron-phonon and ionized impurity scattering, can reach an unprecedented level of $10^5$ to $10^7$ cm$^2$V$^{-1}$s$^{-1}$ over a wide range of realistic doping levels. Moreover, a small elastic strain of 1.7% can drive Bi$_2$O$_2$Se toward the ferroelectric phase transition, which further induces a giant increase in the permittivity, enabling the strain-tuning of carrier mobility by orders of magnitude. These results open a new avenue for the discovery of high-mobility layered semiconductors via phase and dielectric engineering.