Do you want to publish a course? Click here

Bound on Lyapunov exponent in $c=1$ matrix model

79   0   0.0 ( 0 )
 Added by Takeshi Morita
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Classical particle motions in an inverse harmonic potential show the exponential sensitivity to initial conditions, where the Lyapunov exponent $lambda_L$ is uniquely fixed by the shape of the potential. Hence, if we naively apply the bound on the Lyapunov exponent $lambda_L le 2pi T/ hbar$ to this system, it predicts the existence of the bound on temperature (the lowest temperature) $T ge hbar lambda_L/ 2pi$ and the system cannot be taken to be zero temperature when $hbar eq 0$. This seems a puzzle because particle motions in an inverse harmonic potential should be realized without introducing any temperature but this inequality does not allow it. In this article, we study this problem in $N$ non-relativistic free fermions in an inverse harmonic potential ($c=1$ matrix model). We find that thermal radiation is {em induced} when we consider the system in a semi-classical regime even though the system is not thermal at the classical level. This is analogous to the thermal radiation of black holes, which are classically non-thermal but behave as thermal baths quantum mechanically. We also show that the temperature of the radiation in our model saturates the inequality, and thus, the system saturates the bound on the Lyapunov exponent, although the system is free and integrable. Besides, this radiation is related to acoustic Hawking radiation of the fermi fluid.



rate research

Read More

In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in terms of square of the commutator bracket of quantum operators which are separated in time. We also provide a strict model independent bound on the measure of quantum chaos, $-1/N(1-1/pi)leq {bf SFF}leq 0$ and $0leq {bf SFF}leq 1/pi N$, valid for thermal systems with a large and small number of degrees of freedom respectively. Based on the appropriate physical arguments we give a precise mathematical derivation to establish this alternative strict bound of quantum chaos.
84 - Takeshi Morita 2021
Out-of-time-order correlator (OTOC) $langle [x(t),p]^2 rangle $ in an inverted harmonic oscillator (IHO) in one-dimensional quantum mechanics exhibits remarkable properties. The quantum Lyapunov exponent computed through the OTOC precisely agrees with the classical one. Besides, it does not show any quantum fluctuations for arbitrary states. Hence, the OTOC may be regarded as ideal indicators of the butterfly effect in the IHO. Since IHOs are ubiquitous in physics, these properties of the OTOCs might be seen in various situations too. In order to clarify this point, as a first step, we investigate the OTOCs in one dimensional quantum mechanics with polynomial potentials, which exhibit butterfly effects around the peak of the potential in classical mechanics. We find two situations in which the OTOCs show exponential growths reproducing the classical Lyapunov exponent of the peak. The first one, which is obvious, is using suitably localized states near the peak and the second one is taking a double scaling limit akin to the non-critical string theories.
We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to study string interactions, we compute the interaction of two decaying D0-branes in terms of free fermions. This computation is compared with the string theory cylinder diagram using the rolling tachyon ZZ boundary states.
The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surprisingly, there is no direct measure of the chaotic behavior of such systems. Here, we discuss the dynamical phase transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically computed by following the dynamical evolution in tangent space for up to one million SPPs. As discontinuities in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We find that there is chaotic behavior in the disordered phase, which supports the claim that the LLE can be useful as an indicator of phase transitions even for this out-of-equilibrium system.
We study three different measures of quantum correlations -- entanglement spectrum, entanglement entropy, and logarithmic negativity -- for (1+1)-dimensional massive scalar field in flat spacetime. The entanglement spectrum for the discretized scalar field in the ground state indicates a cross-over in the zero-mode regime, which is further substantiated by an analytical treatment of both entanglement entropy and logarithmic negativity. The exact nature of this cross-over depends on the boundary conditions used -- the leading order term switches from a $log$ to $log-log$ behavior for the Periodic and Neumann boundary conditions. In contrast, for Dirichlet, it is the parameters within the leading $log-log$ term that are switched. We show that this cross-over manifests as a change in the behavior of the leading order divergent term for entanglement entropy and logarithmic negativity close to the zero-mode limit. We thus show that the two regimes have fundamentally different information content. Furthermore, an analysis of the ground state fidelity shows us that the region between critical point $Lambda=0$ and the crossover point is dominated by zero-mode effects, featuring an explicit dependence on the IR cutoff of the system. For the reduced state of a single oscillator, we show that this cross-over occurs in the region $Nam_fsim mathscr{O}(1)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا