Do you want to publish a course? Click here

Comparison of stochastic parameterizations in the framework of a coupled ocean-atmosphere model

113   0   0.0 ( 0 )
 Added by Jonathan Demaeyer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new framework is proposed for the evaluation of stochastic subgrid-scale parameterizations in the context of MAOOAM, a coupled ocean-atmosphere model of intermediate complexity. Two physically-based parameterizations are investigated, the first one based on the singular perturbation of Markov operator, also known as homogenization. The second one is a recently proposed parameterization based on the Ruelles response theory. The two parameterization are implemented in a rigorous way, assuming however that the unresolved scale relevant statistics are Gaussian. They are extensively tested for a low-order version known to exhibit low-frequency variability, and some preliminary results are obtained for an intermediate-order version. Several different configurations of the resolved-unresolved scale separations are then considered. Both parameterizations show remarkable performances in correcting the impact of model errors, being even able to change the modality of the probability distributions. Their respective limitations are also discussed.



rate research

Read More

A stochastic subgrid-scale parameterization based on the Ruelles response theory and proposed in Wouters and Lucarini [2012] is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are considered as unresolved. A natural separation of the phase-space into an invariant set and its complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. In this case, the fluctuation term is an additive stochastic noise. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained, provided that the coupling is sufficiently weak. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts.
The predictability of the atmosphere at short and long time scales, associated with the coupling to the ocean, is explored in a new version of the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), based on a 2-layer quasi-geostrophic atmosphere and a 1-layer reduced-gravity quasi-geostrophic ocean. This version features a new ocean basin geometry with periodic boundary conditions in the zonal direction. The analysis presented in this paper considers a low-order version of the model with 40 dynamical variables. First the increase of surface friction (and the associated heat flux) with the ocean can either induce chaos when the aspect ratio between the meridional and zonal directions of the domain of integration is small, or suppress chaos when it is large. This reflects the potentially counter-intuitive role that the ocean can play in the coupled dynamics. Second, and perhaps more importantly, the emergence of long-term predictability within the atmosphere for specific values of the friction coefficient occurs through intermittent excursions in the vicinity of a (long-period) unstable periodic solution. Once close to this solution the system is predictable for long times, i.e. a few years. The intermittent transition close to this orbit is, however, erratic and probably hard to predict. This new route to long-term predictability contrasts with the one found in the closed ocean-basin low-order version of MAOOAM, in which the chaotic solution is permanently wandering in the vicinity of an unstable periodic orbit for specific values of the friction coefficient. The model solution is thus at any time influenced by the unstable periodic orbit and inherits from its long-term predictability.
This paper describes a reduced-order quasi-geostrophic coupled ocean-atmosphere model that allows for an arbitrary number of atmospheric and oceanic modes to be retained in the spectral decomposition. The modularity of this new model allows one to easily modify the model physics. Using this new model, coined the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), we analyse the dependence of the model dynamics on the truncation level of the spectral expansion, and unveil spurious behaviour that may exist at low resolution by a comparison with the higher-resolution configurations. In particular, we assess the robustness of the coupled low-frequency variability when the number of modes is increased. An optimal configuration is proposed for which the ocean resolution is sufficiently high, while the total number of modes is small enough to allow for a tractable and extensive analysis of the dynamics.
The classical approach for studying atmospheric variability is based on defining a background state and studying the linear stability of the small fluctuations around such a state. Weakly non-linear theories can be constructed using higher order expansions terms. While these methods have undoubtedly great value for elucidating the relevant physical processes, they are unable to follow the dynamics of a turbulent atmosphere. We provide a first example of extension of the classical stability analysis to a non-linearly evolving quasi-geostrophic flow. The so-called covariant Lyapunov vectors (CLVs) provide a covariant basis describing the directions of exponential expansion and decay of perturbations to the non-linear trajectory of the flow. We use such a formalism to re-examine the basic barotropic and baroclinic processes of the atmosphere with a quasi-geostrophic beta-plane two-layer model in a periodic channel driven by a forced meridional temperature gradient $Delta T$. We explore three settings of $Delta T$, representative of relatively weak turbulence, well-developed turbulence, and intermediate conditions. We construct the Lorenz energy cycle for each CLV describing the energy exchanges with the background state. A positive baroclinic conversion rate is a necessary but not sufficient condition of instability. Barotropic instability is present only for few very unstable CLVs for large values of $Delta T$. Slowly growing and decaying hydrodynamic Lyapunov modes closely mirror the properties of the background flow. Following classical necessary conditions for barotropic/baroclinic instability, we find a clear relationship between the properties of the eddy fluxes of a CLV and its instability. CLVs with positive baroclinic conversion seem to form a set of modes for constructing a reduced model of the atmosphere dynamics.
Dissolved manganese (Mn) is a biologically essential element, and its oxidised form is involved in the removal of trace elements from ocean waters. Recently, a large number of highly accurate Mn measurements have been obtained in the Atlantic, Indian and Arctic Oceans as part of the GEOTRACES programme. The goal of this study is to combine these new observations with state-of-the-art modelling to give new insights into the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account, realistically, for the sources, processes and sinks of Mn in the ocean. Whereas oxidation and (photo)reduction, as well as aggregation and settling are parameterised in the model, biological uptake is not yet taken into account by the model. Our model reproduces observations accurately and provides the following insights: - The high surface concentrations of manganese are caused by the combination of photoreduction and sources to the upper ocean. The most important sources are dust, then sediments, and, more locally, rivers. - Results show that surface Mn in the Atlantic Ocean moves downwards into the North Atlantic Deep Water, but because of strong removal rates the Mn does not propagate southwards. - There is a mostly homogeneous background concentration of dissolved Mn of about 0.10 to 0.15 nM throughout most of the deep ocean. The model reproduces this by means of a threshold on manganese oxides of 25 pM, suggesting that a minimal concentration of Mn is needed before aggregation and removal become efficient. - The observed sharp hydrothermal signals are produced by assuming both a high source and a strong removal of Mn near hydrothermal vents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا