No Arabic abstract
The survey of Lyman $alpha$ emitters (LAEs) with Subaru Hyper Suprime-Cam, called SILVERRUSH (Ouchi et al.), is producing massive data of LAEs at $zgtrsim6$. Here we present LAE simulations to compare the SILVERRUSH data. In 162$^3$ comoving Mpc$^3$ boxes, where numerical radiative transfer calculations of reionization were performed, LAEs have been modeled with physically motivated analytic recipes as a function of halo mass. We have examined $2^3$ models depending on the presence or absence of dispersion of halo Ly$alpha$ emissivity, dispersion of the halo Ly$alpha$ optical depth, $tau_alpha$, and halo mass dependence of $tau_alpha$. The unique free parameter in our model, a pivot value of $tau_alpha$, is calibrated so as to reproduce the $z=5.7$ Ly$alpha$ luminosity function (LF). We compare our model predictions with Ly$alpha$ LFs at $z=6.6$ and $7.3$, LAE angular auto-correlation functions (ACFs) at $z=5.7$ and $6.6$, and LAE fractions in Lyman break galaxies at $5<z<7$. The Ly$alpha$ LFs and ACFs are reproduced by multiple models, but the LAE fraction turns out to be the most critical test. The dispersion of $tau_alpha$ and the halo mass dependence of $tau_alpha$ are essential to explain all observations reasonably. Therefore, a simple model of one-to-one correspondence between halo mass and Ly$alpha$ luminosity with a constant Ly$alpha$ escape fraction has been ruled out. Based on our best model, we present a formula to estimate the intergalactic neutral hydrogen fraction, $x_{rm HI}$, from the observed Ly$alpha$ luminosity density at $zgtrsim6$. We finally obtain $x_{rm HI}=0.5_{-0.3}^{+0.1}$ as a volume-average at $z=7.3$.
The correlation between neutral Hydrogen (HI) in the intergalactic medium (IGM) and galaxies now attracts great interests. We select four fields which include several coherently strong Ly$alpha$ absorption systems at $zsim2.2$ detected by using background quasars from the whole SDSS/(e)BOSS database. Deep narrow-band and $g$-band imaging are performed using the Hyper Suprime-Cam on the Subaru Telescope. We select out 2,642 Ly$alpha$ emitter (LAE) candidates at $z=2.177pm0.023$ down to the Ly$alpha$ luminosity of $L_{text{Ly}alpha}approx 2 times 10^{42} {rm erg~s}^{-1}$ to construct the galaxy overdensity maps, covering an effective area of 5.39 deg$^2$. Combining the sample with the Ly$alpha$ absorption estimated from 64 (e)BOSS quasar spectra, we find a moderate to strong correlation between the LAE overdensity $delta_{rm LAE}$ and the effective optical depth $tau_{rm LoS}$ in line-of-sights, with $P$-value$=0.09%$ ($<0.01%$) when the field that contains a significant quasar overdensity is in(ex)cluded. The cross-correlation analysis also clearly suggests that up to $4pm1$ pMpc, LAEs tend to cluster in the regions rich in HI gas, indicated by the high $tau_{rm LoS}$, and avoid the low $tau_{rm LoS}$ region where the HI gas is deficient. By averaging the $tau_{rm LoS}$ as a function of the projected distance ($d$) to LAEs, we find a $30%$ excess signal at $2sigma$ level at $d<200$ pkpc, indicating the dense HI in circumgalactic medium, and a tentative excess at $400<d<600$ pkpc in IGM regime, corroborating the cross-correlation signal detected at about $0.5$ pMpc. These statistical analyses indicate that galaxy$-$IGM HI correlations exist on scales ranging from several hundred pkpc to several pMpc at $zsim2.2$.
We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, has been identified as a statistically significant (5.5 sigma) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in their color-magnitude diagram. The significance of this overdensity increases to 10.8 sigma when the relevant isochrone filter is adopted for the search. Based on the distribution of the stars around the likely main sequence turn-off at r ~ 24 mag, the distance to Virgo I is estimated as 87 kpc, and its most likely absolute magnitude calculated from a Monte Carlo analysis is M_V = -0.8 +/- 0.9 mag. This stellar system has an extended spatial distribution with a half-light radius of 38 +12/-11 pc, which clearly distinguishes it from a globular cluster with comparable luminosity. Thus, Virgo I is one of the faintest dwarf satellites known and is located beyond the reach of the Sloan Digital Sky Survey. This demonstrates the power of this survey program to identify very faint dwarf satellites. This discovery of VirgoI is based only on about 100 square degrees of data, thus a large number of faint dwarf satellites are likely to exist in the outer halo of the Milky Way.
We present the first results of the Subaru/Hyper Suprime-Cam (HSC) survey of the interacting galaxy system, NGC4631 and NGC4656. From the maps of resolved stellar populations, we identify 11 dwarf galaxies (including already-known dwarfs) in the outer region of NGC4631 and the two tidal stellar streams around NGC4631, named Stream SE and Stream NW, respectively. This paper describes the fundamental properties of these tidal streams. Based on the tip of red giant branch method and the Bayesian statistics, we find that StreamSE (7.10 Mpc in Expected a posteriori, EAP, with the 90% credible intervals of [6.22, 7.29] Mpc) and StreamNW (7.91 Mpc in EAP with the 90% credible intervals of [6.44, 7.97] Mpc) are located in front of and behind NGC4631, respectively. We also calculate the metallicity distribution of stellar streams by comparing the member stars with theoretical isochrones on the color-magnitude diagram. We find that both streams have the same stellar population based on the Bayesian model selection method, suggesting that they originated from a tidal interaction between NGC4631 and a single dwarf satellite. The expected progenitor has a positively skewed metallicity distribution function with [M/H]_EAP=-0.92 with the 90% credible intervals of [-1.46, -0.51]. The stellar mass of the progenitor is estimated as 3.7 x 10e+8 Msun with the 90% credible intervals of [5.8 x 10e+6, 8.6 x 10e+9] Msun based on the mass-metallicity relation for Local group dwarf galaxies. This is in good agreement with an initial stellar mass of the progenitor presumed in the previous N-body simulation.
We perform a high-cadence transient survey with Subaru Hyper Suprime-Cam (HSC), which we call the Subaru HSC survey Optimized for Optical Transients (SHOOT). We conduct HSC imaging observations with time intervals of about one hour on two successive nights, and spectroscopic and photometric follow-up observations. A rapidly declining blue transient SHOOT14di at $z=0.4229$ is found in observations on two successive nights with an image subtraction technique. The rate of brightness change is $+1.28^{+0.40}_{-0.27}~{rm mag~day^{-1}}$ ($+1.83^{+0.57}_{-0.39}~{rm mag~day^{-1}}$) in the observer (rest) frame and the rest-frame color between $3400$ and $4400~unicode[.8,0]{x212B}$ is $M_{rm 3400unicode[.8,0]{x212B}}-M_{rm 4400unicode[.8,0]{x212B}}=-0.4$. The nature of the object is investigated by comparing its peak luminosity, decline rate, and color with those of transients and variables previously observed, and those of theoretical models. None of the transients or variables share the same properties as SHOOT14di. Comparisons with theoretical models demonstrate that, while the emission from the cooling envelope of a Type IIb supernova shows a slower decline rate than SHOOT14di, and the explosion of a red supergiant star with a dense circumstellar wind shows a redder color than SHOOT14di, the shock breakout at the stellar surface of the explosion of a $25M_{odot}$ red supergiant star with a small explosion energy of $leq0.4times10^{51}$ erg reproduces the multicolor light curve of SHOOT14di. This discovery shows that a high-cadence, multicolor optical transient survey at intervals of about one hour, and continuous and immediate follow-up observations, is important for studies of normal core-collapse supernovae at high redshifts.
Narrow-line regions excited by active galactic nuclei (AGN) are important for studying AGN photoionization and feedback. Their strong [O III] lines can be detected with broadband images, allowing morphological studies of these systems with large-area imaging surveys. We develop a new technique to reconstruct the [O III] images using the Subaru Hyper Suprime-Cam (HSC) Survey aided with spectra from the Sloan Digital Sky Survey (SDSS). The technique involves a careful subtraction of the galactic continuum to isolate emission from the [O III]$lambda$5007 and [O III]$lambda$4959 lines. Compared to traditional targeted observations, this technique is more efficient at covering larger samples with less dedicated observational resources. We apply this technique to an SDSS spectroscopically selected sample of 300 obscured AGN at redshifts 0.1 - 0.7, uncovering extended emission-line region candidates with sizes up to tens of kpc. With the largest sample of uniformly derived narrow-line region sizes, we revisit the narrow-line region size-luminosity relation. The area and radii of the [O III] emission-line regions are strongly correlated with the AGN luminosity inferred from the mid-infrared (15 $mu$m rest-frame) with a power-law slope of $0.62^{+0.05}_{-0.06} pm 0.10$ (statistical and systemic errors), consistent with previous spectroscopic findings. We discuss the implications for the physics of AGN emission-line region and future applications of this technique, which should be useful for current and next-generation imaging surveys to study AGN photoionization and feedback with large statistical samples.