No Arabic abstract
While interaction with circumstellar material is known to play an important role in Type IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent campaigns to observe SNe within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous SNe II of all subclasses. These flash ionization features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity (LL) SN to show flash ionization features, SN 2016bkv. This SN peaked at $M_V = -16$ mag and has H{alpha} expansion velocities under 1350 km/s around maximum light, placing it at the faint/slow end of the distribution of SNe IIP (similar to SN 2005cs). The light-curve shape of SN 2016bkv is also extreme among SNe IIP. A very strong initial peak could indicate additional luminosity from circumstellar interaction. A very small fall from the plateau to the nickel tail indicates unusually large production of radioactive nickel compared to other LL SNe IIP. A comparison between nebular spectra of SN 2016bkv and models raises the possibility that SN 2016bkv is an electron-capture supernova.
We present optical and near-infrared observations of a low-luminosity Type IIP supernova (SN) 2016bkv from the initial rising phase to the plateau phase. Our observations show that the end of the plateau is extended to $gtrsim 140$ days since the explosion, indicating that this SN takes one of the longest time to finish the plateau phase. among Type IIP SNe (SNe IIP), including low-luminosity (LL) SNe IIP. The line velocities of various ions at the middle of the plateau phase are as low as 1,000--1,500 km s$^{-1}$, which is the lowest even among LL SNe IIP. These measurements imply that the ejecta mass in SN 2016bkv is larger than that of the well-studied LL IIP SN 2003Z. In the early phase, SN 2016bkv shows a strong bump in the light curve. In addition, the optical spectra in this bump phase exhibit a blue continuum accompanied with a narrow H$alpha$ emission line. These features indicate an interaction between the SN ejecta and the circumstellar matter (CSM) as in SNe IIn. Assuming the ejecta-CSM interaction scenario, the mass loss rate is estimated to be $sim 1.7 times 10^{-2} M_{odot}$ yr$^{-1}$ within a few years before the SN explosion. This is comparable to or even larger than the largest mass loss rate observed for the Galactic red supergiants ($sim 10^{-3} M_{odot}$ yr$^{-1}$ for VY CMa). We suggest that the progenitor star of SN 2016bkv experienced a violent mass loss just before the SN explosion.
We investigate the low-luminosity supernova SN 2016bkv and its peculiar early-time interaction. For that, we compute radiative transfer models using the CMFGEN code. Because SN 2016bkv shows signs of interaction with material expelled by its progenitor, it offers a great opportunity to constrain the uncertain evolutionary channels leading to low-luminosity supernovae. Our models indicate that the progenitor had a mass-loss rate of (6.0 +- 2.0) x 1e-4 Msun/yr (assuming a velocity of 150 km/s). The surface abundances of the progenitor are consistent with solar contents of He and CNO. If SN 2016bkvs progenitor evolved as a single star, it was an odd red supergiant that did not undergo the expected dredge up for some reason. We propose that the progenitor more likely evolved through binary interaction. One possibility is that the primary star accreted unprocessed material from a companion and avoided further rotational and convective mixing until the SN explosion. Another possibility is a merger with a lower mass star, with the primary remaining with low N abundance until core collapse. Given the available merger models, we can only put a loose constraint on the pre-explosion mass around 10-20 Msun, with lower values being favored based on previous observational constraints from the nebular phase.
The enigmatic type IIP SN 2016X demonstrates the unprecedented asphericity in the nebular H-alpha line profile, the absence of nebular [O I] emission, and the unusual occultation effect due to the internal dust. The hydrodynamic modelling of the bolometric light curve and expansion velocities suggests that the event is an outcome of the massive star explosion that ejected 28 Msun with the kinetic energy of 1.7x10^51 erg and 0.03 Msun of radioactive Ni-56. We recover the bipolar distribution of Ni-56 from the H-alpha profile via the simulation of the emissivity produced by non-spherical Ni-56 ejecta. The conspicuous effect of the dust absorption in the H-alpha profile rules out the occultation by the dusty sphere or dusty thick disk but turns out consistent with the thin dusty disk-like structure in the plane perpendicular to the bipolar axis. We speculate that the absence of the nebular [O I] emission might originate from the significant cooling of the oxygen-rich matter mediated by CO and SiO molecules.
Type IIP supernovae (SNe IIP), which represent the most common class of core-collapse (CC) SNe, show a rapid increase in continuum polarization just after entering the tail phase. This feature can be explained by a highly asymmetric helium core, which is exposed when the hydrogen envelope becomes transparent. Here we report the case of a SN IIP (SN~2017gmr) that shows an unusually early rise of the polarization, $gtrsim 30$ days before the start of the tail phase. This implies that SN~2017gmr is an SN IIP that has very extended asphericity. The asymmetries are not confined to the helium core, but reach out to a significant part of the outer hydrogen envelope, hence clearly indicating a marked intrinsic diversity in the aspherical structure of CC explosions. These observations provide new constraints on the explosion mechanism, where viable models must be able to produce such extended deviations from spherical symmetry, and account for the observed geometrical diversity.
HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was $sim 3times10^{43}$ erg/s and even at 850 days exceeds $10^{42}$ erg/s. A NIR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is $> 6.5times10^{50}$ ergs, excluding the dust component. The spectral lines can be separated into one broad component due to electron scattering, and one narrow with expansion velocity $sim 100$ km/s from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after $sim 50$ days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an $r^{-2}$ CSM with a mass loss rate of $sim 0.1$ M_sun/yr. The total mass lost is $> 3$ M_sun. These properties are consistent with the SN expanding into a CSM characteristic of an LBV progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM still opaque to electron scattering.