Optimal Lower Bounds for Sketching Graph Cuts


Abstract in English

We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega(nlog n/epsilon^2)$ bits of space in the worst case, improving the $Omega(n/epsilon^2)$ bound of Andoni et al. and matching the best known upper bound achieved by spectral sparsifiers. Our proof is based on a rigidity phenomenon for cut (and spectral) approximation which may be of independent interest: any two $d-$regular graphs which approximate each others cuts significantly better than a random graph approximates the complete graph must overlap in a constant fraction of their edges.

Download