Beyond Keywords and Relevance: A Personalized Ad Retrieval Framework in E-Commerce Sponsored Search


Abstract in English

On most sponsored search platforms, advertisers bid on some keywords for their advertisements (ads). Given a search request, ad retrieval module rewrites the query into bidding keywords, and uses these keywords as keys to select Top N ads through inverted indexes. In this way, an ad will not be retrieved even if queries are related when the advertiser does not bid on corresponding keywords. Moreover, most ad retrieval approaches regard rewriting and ad-selecting as two separated tasks, and focus on boosting relevance between search queries and ads. Recently, in e-commerce sponsored search more and more personalized information has been introduced, such as user profiles, long-time and real-time clicks. Personalized information makes ad retrieval able to employ more elements (e.g. real-time clicks) as search signals and retrieval keys, however it makes ad retrieval more difficult to measure ads retrieved through different signals. To address these problems, we propose a novel ad retrieval framework beyond keywords and relevance in e-commerce sponsored search. Firstly, we employ historical ad click data to initialize a hierarchical network representing signals, keys and ads, in which personalized information is introduced. Then we train a model on top of the hierarchical network by learning the weights of edges. Finally we select the best edges according to the model, boosting RPM/CTR. Experimental results on our e-commerce platform demonstrate that our ad retrieval framework achieves good performance.

Download