Do you want to publish a course? Click here

Kato square root problem with unbounded leading coefficients

73   0   0.0 ( 0 )
 Added by Luis Escauriaza
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We prove the Kato conjecture for elliptic operators, $L=- ablacdotleft((mathbf A+mathbf D) abla right)$, with $mathbf A$ a complex measurable bounded coercive matrix and $mathbf D$ a measurable real-valued skew-symmetric matrix in $mathbb{R}^n$ with entries in $BMO(mathbb{R}^n)$;, i.e., the domain of $sqrt{L},$ is the Sobolev space $dot H^1(mathbb{R}^n)$ in any dimension, with the estimate $|sqrt{L}, f|_2lesssim | abla f|_2$.



rate research

Read More

We study existence and uniqueness of the invariant measure for a stochastic process with degenerate diffusion, whose infinitesimal generator is a linear subelliptic operator in the whole space R N with coefficients that may be unbounded. Such a measure together with a Liouville-type theorem will play a crucial role in two applications: the ergodic problem studied through stationary problems with vanishing discount and the long time behavior of the solution to a parabolic Cauchy problem. In both cases, the constants will be characterized in terms of the invariant measure.
132 - M. Kunze , L. Lorenzi , A. Lunardi 2008
We study a class of elliptic operators $A$ with unbounded coefficients defined in $ItimesCR^d$ for some unbounded interval $IsubsetCR$. We prove that, for any $sin I$, the Cauchy problem $u(s,cdot)=fin C_b(CR^d)$ for the parabolic equation $D_tu=Au$ admits a unique bounded classical solution $u$. This allows to associate an evolution family ${G(t,s)}$ with $A$, in a natural way. We study the main properties of this evolution family and prove gradient estimates for the function $G(t,s)f$. Under suitable assumptions, we show that there exists an evolution system of measures for ${G(t,s)}$ and we study the first properties of the extension of $G(t,s)$ to the $L^p$-spaces with respect to such measures.
We study asymptotic behavior in a class of non-autonomous second order parabolic equations with time periodic unbounded coefficients in $mathbb Rtimes mathbb R^d$. Our results generalize and improve asymptotic behavior results for Markov semigroups having an invariant measure. We also study spectral properties of the realization of the parabolic operator $umapsto {cal A}(t) u - u_t$ in suitable $L^p$ spaces.
181 - B. Farkas , L. Lorenzi 2008
We consider a class of non-trivial perturbations ${mathscr A}$ of the degenerate Ornstein-Uhlenbeck operator in ${mathbb R}^N$. In fact we perturb both the diffusion and the drift part of the operator (say $Q$ and $B$) allowing the diffusion part to be unbounded in ${mathbb R}^N$. Assuming that the kernel of the matrix $Q(x)$ is invariant with respect to $xin {mathbb R}^N$ and the Kalman rank condition is satisfied at any $xin{mathbb R}^N$ by the same $m<N$, and developing a revised version of Bernsteins method we prove that we can associate a semigroup ${T(t)}$ of bounded operators (in the space of bounded and continuous functions) with the operator ${mathscr A}$. Moreover, we provide several uniform estimates for the spatial derivatives of the semigroup ${T(t)}$ both in isotropic and anisotropic spaces of (Holder-) continuous functions. Finally, we prove Schauder estimates for some elliptic and parabolic problems associated with the operator ${mathscr A}$.
We consider a class of vector-valued elliptic operators with unbounded coefficients, coupled up to the first-order, in the Lebesgue space L^p(R^d;R^m) with p in (1,infty). Sufficient conditions to prove generation results of an analytic C_0-semigroup T(t), together with a characterization of the domain of its generator, are given. Some results related to the hypercontractivity and the ultraboundedness of the semigroup are also established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا