Do you want to publish a course? Click here

Dual frequency comb spectroscopy in the molecular fingerprint region

225   0   0.0 ( 0 )
 Added by Scott Diddams
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectroscopy in the molecular fingerprint spectral region (6.5-20 $mu$m) yields critical information on material structure for physical, chemical and biological sciences. Despite decades of interest and effort, this portion of the electromagnetic spectrum remains challenging to cover with conventional laser technologies. In this report, we present a simple and robust method for generating super-octave, optical frequency combs in the fingerprint region through intra-pulse difference frequency generation in an orientation-patterned gallium phosphide crystal. We demonstrate the utility of this unique coherent light source for high-precision, dual-comb spectroscopy in methanol and ethanol vapor. These results highlight the potential of laser frequency combs for a wide range of molecular sensing applications, from basic molecular spectroscopy to nanoscopic imaging.



rate research

Read More

Dual-comb spectroscopy has been proven a powerful tool in molecular characterization, which remains challenging to implement in the mid-infrared (MIR) region due to difficulties in the realization of two mutually locked comb sources and efficient photodetection. An effective way to overcome those limitations is optical upconversion; however, previously reported configurations are either demanding or inefficient. Here we introduce and experimentally demonstrate a variant of dual-comb spectroscopy called cross-comb spectroscopy, in which a MIR comb is upconverted via sum-frequency generation (SFG) with a near-infrared (NIR) comb with a shifted repetition rate and then interfered with a spectral extension of the NIR comb. We experimentally demonstrate a proof-of-concept measurement of atmospheric CO2 around 4.25 micrometer, with a 350-nm instantaneous bandwidth and 25000 resolved comb lines. Cross-comb spectroscopy can be realized using up- or down-conversion and offers an adaptable and efficient alternative to dual-comb spectroscopy outside the well-developed near-IR region, where having two mutually coherent sources and efficient photodetection is challenging. Moreover, the nonlinear gating in cross-comb spectroscopy promises a superior dynamic range compared to dual-comb spectroscopy.
Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stabilized with a consistent framework. Some applications require phase stabilization, including optical-frequency synthesis and measurements, optical-frequency division, and optical clocks. Partially stabilized microcombs can also benefit applications, such as oscillators, ranging, dual-comb spectroscopy, wavelength calibration, and optical communications. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency-comb sources important for studying comb-matter interactions with atoms and molecules. Here, we explore direct microcomb atomic spectroscopy, utilizing a cascaded, two-photon 1529-nm atomic transition of rubidium. Both the microcomb and the atomic vapor are implemented with planar fabrication techniques to support integration. By fine and simultaneous control of the repetition rate and carrier-envelope-offset frequency of the soliton microcomb, we obtain direct sub-Doppler and hyperfine spectroscopy of the $4^2D_{5/2}$ manifold. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations of the microcomb at the kilohertz-level over a few seconds and < 1 MHz day-to-day accuracy. Our work demonstrates atomic spectroscopy with microcombs and provides a rubidium-stabilized microcomb laser source, operating across the 1550 nm band for sensing, dimensional metrology, and communication.
291 - D. Lisak 2021
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectroscopy without sacrificing orders of magnitude of resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane - an important greenhouse gas and breath biomarker. The high sensitivity and accuracy of broadband DC-CRDS, shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.
Broadband dual-comb spectroscopy (DCS) based on portable mode-locked fiber frequency combs is a powerful tool for in situ, calibration free, multi-species spectroscopy. While the acquisition of a single spectrum with mode-locked DCS typically takes microseconds to milliseconds, the applications of these spectrometers have generally been limited to systems and processes with time changes on the order of seconds or minutes due to the need to average many spectra to reach a high signal-to-noise ratio (SNR). Here, we demonstrate high-speed, continuous, fiber mode-locked laser DCS with down to 11 $mu$s time resolution. We achieve this by filtering the comb spectra using portable Fabry-Perot cavities to generate filtered combs with 1 GHz tooth spacing. The 1 GHz spacing increases the DCS acquisition speed and SNR for a given optical bandwidth while retaining a sufficient spacing to resolve absorption features over a wide range of conditions. We measure spectra of methane inside a rapid compression machine throughout the 16 ms compression cycle with 133 cm$^{-1}$ bandwidth (4000 comb teeth) and 1.4 ms time resolution by spectrally filtering one of the combs. By filtering both combs, we measured a single-shot, 25 cm$^{-1}$ (750 comb teeth) spectrum of CO around 6330 cm$^{-1}$ in 11 $mu$s. The technique enables simultaneously high-speed and high-resolution DCS measurements, and can be applied anywhere within the octave-spanning spectrum of robust and portable fiber mode-locked frequency combs.
We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. Finally, we demonstrate the mutual coherence of these devices by using two frequency combs on the same device to generate a radio-frequency dual comb spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا