No Arabic abstract
The DArk Matter Particle Explorer (DAMPE) experiment has recently announced the first results for the measurement of total electron plus positron fluxes between 25 GeV and 4.6 TeV. A spectral break at about 0.9 TeV and a tentative peak excess around 1.4 TeV have been found. However, it is very difficult to reproduce both the peak signal and the smooth background including spectral break simultaneously. We point out that the numbers of events in the two energy ranges (bins) close to the 1.4 TeV excess have $1sigma$ deficits. With the basic physics principles such as simplicity and naturalness, we consider the $-2sigma$, $+2sigma$, and $-1sigma$ deviations due to statistical fluctuations for the 1229.3~GeV bin, 1411.4~GeV bin, and 1620.5~GeV bin. Interestingly, we show that all the DAMPE data can be explained consistently via both the continuous distributed pulsar and dark matter interpretations, which have $chi^{2} simeq 17.2 $ and $chi^{2} simeq 13.9$ (for all the 38 points in DAMPE electron/positron spectrum with 3 of them revised), respectively. These results are different from the previous analyses by neglecting the 1.4 TeV excess. At the same time, we do a similar global fitting on the newly released CALET lepton data, which could also be interpreted by such configurations. Moreover, we present a $U(1)_D$ dark matter model with Breit-Wigner mechanism, which can provide the proper dark matter annihilation cross section and escape the CMB constraint. Furthermore, we suggest a few ways to test our proposal.
We propose a flavored $U(1)_{emu}$ neutrino mass and dark matter~(DM) model to explain the recent DArk Matter Particle Explorer (DAMPE) data, which feature an excess on the cosmic ray electron plus positron flux around 1.4 TeV. Only the first two lepton generations of the Standard Model are charged under the new $U(1)_{emu}$ gauge symmetry. A vector-like fermion $psi$, which is our DM candidate, annihilates into $e^{pm}$ and $mu^{pm}$ via the new gauge boson $Z$ exchange and accounts for the DAMPE excess. We have found that the data favors a $psi$ mass around 1.5~TeV and a $Z$ mass around 2.6~TeV, which can potentially be probed by the next generation lepton colliders and DM direct detection experiments.
The DArk Matter Particle Explorer (DAMPE), a high energy cosmic ray and $gamma$-ray detector in space, has recently reported the new measurement of the total electron plus positron flux between 25 GeV and 4.6 TeV. A spectral softening at $sim0.9$ TeV and a tentative peak at $sim1.4$ TeV have been reported. We study the physical implications of the DAMPE data in this work. The presence of the spectral break significantly tightens the constraints on the model parameters to explain the electron/positron excesses. The spectral softening can either be explained by the maximum acceleration limits of electrons by astrophysical sources, or a breakdown of the common assumption of continuous distribution of electron sources at TeV energies in space and time. The tentive peak at $sim1.4$ TeV implies local sources of electrons/positrons with quasi-monochromatic injection spectrum. We find that the cold, ultra-relativistic $e^+e^-$ winds from pulsars may give rise to such a structure. The pulsar is requird to be middle-aged, relatively slowly-rotated, mildly magnetized, and isolated in a density cavity. The annihilation of DM particles ($m_{chi}sim1.5$ TeV) into $e^+e^-$ pairs in a nearby clump or an over-density region may also explain the data. In the DM scenario, the inferred clump mass (or density enhancement) is about $10^7-10^8$ M$_odot$ (or $17-35$ times of the canonical local density) assuming a thermal production cross section, which is relatively extreme compared with the expectation from numerical simulations. A moderate enhancement of the annihilation cross section via, e.g., the Sommerfeld mechanism or non-thermal production, is thus needed.
We propose a model of dark matter identified with a pseudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow resonance into a pair of R-axions each of which subsequently decays into a pair of light leptons. The Breit-Wigner enhancement explains the excess electron and positron fluxes reported in the recent cosmic ray experiments PAMELA, ATIC and PPB-BETS without postulating an overdensity in halo, and the limit on anti-proton flux from PAMELA is naturally evaded.
In a recent letter, the AMS collaboration reported the detailed and extensive data concerning the distribution in energy of electron and positron cosmic rays. A central result of the experimental work resides in the energy regime $30 {rm GeV}< E < 1 {rm TeV}$ wherein the power law exponent of the energy distribution is measured to be $alpha ({rm experiment})=3.17$. In virtue of the Fermi statistics obeyed by electrons and positrons, a theoretical value was predicted as $alpha ({rm theory})=3.151374$ in very good agreement with experimental data. The consequences of this agreement between theory and experiment concerning the sources of cosmic ray electrons and positrons are briefly explored.
A recent analysis of cosmic-ray data from a space borne experiment by the AMS collaboration supports the observation of an excess in the cosmic-ray positron spectrum by previous balloon experiments. The combination of the various experimental data establishes a deviation from the expected background with a significance of more than four standard deviations. The observed change in the spectral index cannot be explained without introducing a new source of positrons. When interpreted within the MSSM a consistent description of the antiproton spectrum, the diffuse gamma-ray flux and the positron fraction is obtained which is compatible with all other experimental data, including recent WMAP data.