Do you want to publish a course? Click here

CP symmetry and thermal effects on Dirac bi-spinor spin-parity local correlations

175   0   0.0 ( 0 )
 Added by Victor Bittencourt
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intrinsic quantum correlations supported by the $SU(2)otimes SU(2)$ structure of the Dirac equation used to describe particle/antiparticle states, optical ion traps and bilayer graphene are investigated and connected to the description of local properties of Dirac bi-spinors. For quantum states driven by Dirac-like Hamiltonians, quantum entanglement and geometric discord between spin and parity degrees of freedom - sometimes mapped into equivalent low energy internal degrees of freedom - are obtained. Such textit{spin-parity} quantum correlations and the corresponding nonlocal intrinsic structures of bi-spinor fermionic states can be classified in order to relate quantum observables to the (non)local behavior of these correlations. It is shown that free particle mixed states do not violate the Clauser-Horne-Shymony-Holt inequality: the correlations in such mixed bi-spinors, although quantum, can be reproduced by a suitable local hidden variable model. Additionally, the effects due to a non-minimal coupling to a homogeneous magnetic field, and to the inclusion of thermal effects are evaluated, and quantum correlations of associated quantum mixtures and of the thermal states are all quantified.The above-mentioned correlation quantifiers are then used to measure the influence of CP transformations on textit{spin-parity} quantum correlations, and our results show that quantum entanglement is invariant under CP transformations, although the geometric discord is highly sensitive to the CP symmetry.



rate research

Read More

78 - Jiaming Li , Tishuo Wang , Le Luo 2020
The decay of any unstable quantum state can be inhibited or enhanced by carefully tailored measurements, known as the quantum Zeno effect (QZE) or anti-Zeno effect (QAZE). To date, studies of QZE (QAZE) transitions have since expanded to various system-environment coupling, in which the time evolution can be suppressed (enhanced) not only by projective measurement but also through dissipation processes. However, a general criterion, which could extend to arbitrary dissipation strength and periodicity, is still lacking. In this letter, we show a general framework to unify QZE-QAZE effects and parity-time (PT) symmetry breaking transitions, in which the dissipative Hamiltonian associated to the measurement effect is mapped onto a PT-symmetric non- Hermitian Hamiltonian, thus applying the PT symmetry transitions to distinguish QZE (QAZE) and their crossover behavior. As a concrete example, we show that, in a two-level system periodically coupled to a dissipative environment, QZE starts at an exceptional point (EP), which separates the PT-symmetric (PTS) phase and PT-symmetry broken (PTB) phase, and ends at the resonance point (RP) of the maximum PT-symmetry breaking; while QAZE extends the rest of PTB phase and remains the whole PTS phase. Such findings reveal a hidden relation between QZE-QAZE and PTS-PTB phases in non-Hermitian quantum dynamics.
In this paper we examine the decay of quantum correlations for the radiation field in a two-mode squeezed thermal state in contact with local thermal reservoirs. Two measures of the evolving quantum correlations are compared: the entanglement of formation and the quantum discord. We derive analytic expressions of the entanglement-death time in two special cases: when the reservoirs for each mode are identical, as well as when a single reservoir acts on the first mode only. In the latter configuration, we show that all the pure Gaussian states lose their entanglement at the same time determined solely by the field-reservoir coupling. Also investigated is the evolution of the Gaussian quantum discord for the same choices of thermal baths. We notice that the discord can increase in time above its initial value in a special situation, namely, when it is defined by local measurements on the attenuated mode and the input state is mixed. This enhancement of discord is stronger for zero-temperature reservoirs and increases with the input degree of mixing.
One of the principal objectives of quantum thermodynamics is to explore quantum effects and their potential beneficial role in thermodynamic tasks like work extraction or refrigeration. So far, even though several papers have already shown that quantum effect could indeed bring quantum advantages, a global and deeper understanding is still lacking. Here, we extend previous models of autonomous machines to include quantum batteries made of arbitrary systems of discrete spectrum. We establish their actual efficiency, which allows us to derive an efficiency upper bound, called maximal achievable efficiency, shown to be always achievable, in contrast with previous upper bounds based only on the Second Law. Such maximal achievable efficiency can be expressed simply in term of the it apparent temperature of the quantum battery. This important result appears to be a powerful tool to understand how quantum features like coherence but also many-body correlations and non-thermal population distribution can be harnessed to increase the efficiency of thermal machines.
In this paper we present an analysis of the spin behavior of electrons propagating through a laser field. We present an experimentally realizable scenario in which spin-dependent effects of the interaction between the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized nonrelativistic femtosecond electron pulses.
73 - Kazuo Fujikawa 2020
The parity transformation law of the fermion field $psi(x)$ is usually defined by the $gamma^{0}$-parity $psi^{p}(t,-vec{x}) = gamma^{0}psi(t,-vec{x})$ with eigenvalues $pm 1$, while the $igamma^{0}$-parity $psi^{p}(t,-vec{x})=igamma^{0}psi(t,-vec{x})$ is required for the Majorana fermion. The compatibility issues of these two parity laws arise in generic fermion number violating theories where a general class of Majorana fermions appear. In the case of Majorana neutrinos constructed from chiral neutrinos in an extension of the Standard Model, the Majorana neutrinos can be characterized by CP symmetry although C and P are separately broken. It is then shown that either choice of the parity operation, $gamma^{0}$ or $igamma^{0}$, in the level of the starting fermions gives rise to the consistent and physically equivalent descriptions of emergent Majorana neutrinos both for Weinbergs model of neutrinos and for a general class of seesaw models. The mechanism of this equivalence is that the Majorana neutrino constructed from a chiral neutrino, which satisfies the classical Majorana condition $psi(x)=Coverline{psi(x)}^{T}$, allows the phase freedom $psi(x)=e^{ialpha} u_{L}(x) + e^{-ialpha}Coverline{ u_{L}(x)}^{T}$ with $alpha=0 {rm or} pi/4$ that accounts for the phase coming from the different definitions of parity for $ u_{L}(x)$ and ensures the consistent definitions of CP symmetry $({cal CP})psi(x)({cal CP})^{dagger}= pm igamma^{0}psi(t,-vec{x})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا