Do you want to publish a course? Click here

Minimax Estimation of Large Precision Matrices with Bandable Cholesky Factor

90   0   0.0 ( 0 )
 Added by Zhao Ren
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Last decade witnesses significant methodological and theoretical advances in estimating large precision matrices. In particular, there are scientific applications such as longitudinal data, meteorology and spectroscopy in which the ordering of the variables can be interpreted through a bandable structure on the Cholesky factor of the precision matrix. However, the minimax theory has still been largely unknown, as opposed to the well established minimax results over the corresponding bandable covariance matrices. In this paper, we focus on two commonly used types of parameter spaces, and develop the optimal rates of convergence under both the operator norm and the Frobenius norm. A striking phenomenon is found: two types of parameter spaces are fundamentally different under the operator norm but enjoy the same rate optimality under the Frobenius norm, which is in sharp contrast to the equivalence of corresponding two types of bandable covariance matrices under both norms. This fundamental difference is established by carefully constructing the corresponding minimax lower bounds. Two new estimation procedures are developed: for the operator norm, our optimal procedure is based on a novel local cropping estimator targeting on all principle submatrices of the precision matrix while for the Frobenius norm, our optimal procedure relies on a delicate regression-based thresholding rule. Lepskis method is considered to achieve optimal adaptation. We further establish rate optimality in the nonparanormal model. Numerical studies are carried out to confirm our theoretical findings.

rate research

Read More

134 - Hai Shu , Bin Nan 2014
We consider the estimation of large covariance and precision matrices from high-dimensional sub-Gaussian or heavier-tailed observations with slowly decaying temporal dependence. The temporal dependence is allowed to be long-range so with longer memory than those considered in the current literature. We show that several commonly used methods for independent observations can be applied to the temporally dependent data. In particular, the rates of convergence are obtained for the generalized thresholding estimation of covariance and correlation matrices, and for the constrained $ell_1$ minimization and the $ell_1$ penalized likelihood estimation of precision matrix. Properties of sparsistency and sign-consistency are also established. A gap-block cross-validation method is proposed for the tuning parameter selection, which performs well in simulations. As a motivating example, we study the brain functional connectivity using resting-state fMRI time series data with long-range temporal dependence.
190 - Zeyu Wu , Cheng Wang , Weidong Liu 2021
In this paper, we estimate the high dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We study a Lasso-type method for high dimensional precision matrix estimation and derive general error bounds under the weak sparsity condition. The common irrepresentable condition is relaxed and the results are applicable to the weak sparse matrix. As applications, we study the precision matrix estimation for the heavy-tailed data, the non-paranormal data, and the matrix data with the Lasso-type method.
This paper deals with the dimension reduction for high-dimensional time series based on common factors. In particular we allow the dimension of time series $p$ to be as large as, or even larger than, the sample size $n$. The estimation for the factor loading matrix and the factor process itself is carried out via an eigenanalysis for a $ptimes p$ non-negative definite matrix. We show that when all the factors are strong in the sense that the norm of each column in the factor loading matrix is of the order $p^{1/2}$, the estimator for the factor loading matrix, as well as the resulting estimator for the precision matrix of the original $p$-variant time series, are weakly consistent in $L_2$-norm with the convergence rates independent of $p$. This result exhibits clearly that the `curse is canceled out by the `blessings in dimensionality. We also establish the asymptotic properties of the estimation when not all factors are strong. For the latter case, a two-step estimation procedure is preferred accordingly to the asymptotic theory. The proposed methods together with their asymptotic properties are further illustrated in a simulation study. An application to a real data set is also reported.
364 - Clifford Lam 2008
This paper focuses on exploring the sparsity of the inverse covariance matrix $bSigma^{-1}$, or the precision matrix. We form blocks of parameters based on each off-diagonal band of the Cholesky factor from its modified Cholesky decomposition, and penalize each block of parameters using the $L_2$-norm instead of individual elements. We develop a one-step estimator, and prove an oracle property which consists of a notion of block sign-consistency and asymptotic normality. In particular, provided the initial estimator of the Cholesky factor is good enough and the true Cholesky has finite number of non-zero off-diagonal bands, oracle property holds for the one-step estimator even if $p_n gg n$, and can even be as large as $log p_n = o(n)$, where the data $y$ has mean zero and tail probability $P(|y_j| > x) leq Kexp(-Cx^d)$, $d > 0$, and $p_n$ is the number of variables. We also prove an operator norm convergence result, showing the cost of dimensionality is just $log p_n$. The advantage of this method over banding by Bickel and Levina (2008) or nested LASSO by Levina emph{et al.} (2007) is that it allows for elimination of weaker signals that precede stronger ones in the Cholesky factor. A method for obtaining an initial estimator for the Cholesky factor is discussed, and a gradient projection algorithm is developed for calculating the one-step estimate. Simulation results are in favor of the newly proposed method and a set of real data is analyzed using the new procedure and the banding method.
Statistical inference for sparse covariance matrices is crucial to reveal dependence structure of large multivariate data sets, but lacks scalable and theoretically supported Bayesian methods. In this paper, we propose beta-mixture shrinkage prior, computationally more efficient than the spike and slab prior, for sparse covariance matrices and establish its minimax optimality in high-dimensional settings. The proposed prior consists of beta-mixture shrinkage and gamma priors for off-diagonal and diagonal entries, respectively. To ensure positive definiteness of the resulting covariance matrix, we further restrict the support of the prior to a subspace of positive definite matrices. We obtain the posterior convergence rate of the induced posterior under the Frobenius norm and establish a minimax lower bound for sparse covariance matrices. The class of sparse covariance matrices for the minimax lower bound considered in this paper is controlled by the number of nonzero off-diagonal elements and has more intuitive appeal than those appeared in the literature. The obtained posterior convergence rate coincides with the minimax lower bound unless the true covariance matrix is extremely sparse. In the simulation study, we show that the proposed method is computationally more efficient than competitors, while achieving comparable performance. Advantages of the shrinkage prior are demonstrated based on two real data sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا