Multi-oriented props and homotopy algebras with branes


Abstract in English

We introduce a new category of differential graded multi-oriented props whose representations (called homotopy algebras with branes) in a graded vector space require a choice of a collection of $k$ linear subspaces in that space, $k$ being the number of extra directions (if $k=0$ this structure recovers an ordinary prop); symplectic vector spaces equipped with $k$ Lagrangian subspaces play a distinguished role in this theory. Manin triples is a classical example of an algebraic structure (concretely, a Lie bialgebra structure) given in terms of a vector space and its subspace; in the context of this paper Manin triples are precisely symplectic Lagrangian representations of the {em 2-oriented} generalization of the classical operad of Lie algebras. In a sense, the theory of multi-oriented props provides us with a far reaching strong homotopy generalization of Manin triples type constructions. The homotopy theory of multi-oriented props can be quite non-trivial (and different from that of ordinary props). The famous Grothendieck-Teichmuller group acts faithfully as homotopy non-trivial automorphisms on infinitely many multi-oriented props, a fact which motivated much the present work as it gives us a hint to a non-trivial deformation quantization theory in every geometric dimension $dgeq 4$ generalizing to higher dimensions Drinfeld-Etingof-Kazhdans quantizations of Lie bialgebras (the case $d=3$) and Kontsevichs quantizations of Poisson structures (the case $d=2$).

Download