No Arabic abstract
This paper explores the identification and estimation of nonseparable panel data models. We show that the structural function is nonparametrically identified when it is strictly increasing in a scalar unobservable variable, the conditional distributions of unobservable variables do not change over time, and the joint support of explanatory variables satisfies some weak assumptions. To identify the target parameters, existing studies assume that the structural function does not change over time, and that there are stayers, namely individuals with the same regressor values in two time periods. Our approach, by contrast, allows the structural function to depend on the time period in an arbitrary manner and does not require the existence of stayers. In estimation part of the paper, we consider parametric models and develop an estimator that implements our identification results. We then show the consistency and asymptotic normality of our estimator. Monte Carlo studies indicate that our estimator performs well in finite samples. Finally, we extend our identification results to models with discrete outcomes, and show that the structural function is partially identified.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assigned or time is an instrument. Partial identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed-effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of $T$, the number of time periods, is shown by deriving shrinkage rates for the identified set as $T$ grows. We also consider semiparametric, discrete-choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally-convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients -- are estimated by cross sectional sample moments of GMM estimators applied separately to the time series of each individual. To deal with the incidental parameter problem introduced by the noise of the within-individual estimators in short panels, we develop bias corrections. These corrections are based on higher-order asymptotic expansions of the GMM estimators and produce improved point and interval estimates in moderately long panels. Under asymptotic sequences where the cross sectional and time series dimensions of the panel pass to infinity at the same rate, the uncorrected estimator has an asymptotic bias of the same order as the asymptotic variance. The bias corrections remove the bias without increasing variance. An empirical example on cigarette demand based on Becker, Grossman and Murphy (1994) shows significant heterogeneity in the price effect across U.S. states.
In this study, we explore the partial identification of nonseparable models with continuous endogenous and binary instrumental variables. We show that the structural function is partially identified when it is monotone or concave in the explanatory variable. DHaultfoeuille and Fevrier (2015) and Torgovitsky (2015) prove the point identification of the structural function under a key assumption that the conditional distribution functions of the endogenous variable for different values of the instrumental variables have intersections. We demonstrate that, even if this assumption does not hold, monotonicity and concavity provide identifying power. Point identification is achieved when the structural function is flat or linear with respect to the explanatory variable over a given interval. We compute the bounds using real data and show that our bounds are informative.
In this paper, we propose a varying coefficient panel data model with unobservable multiple interactive fixed effects that are correlated with the regressors. We approximate each coefficient function by B-spline, and propose a robust nonlinear iteration scheme based on the least squares method to estimate the coefficient functions of interest. We also establish the asymptotic theory of the resulting estimators under certain regularity assumptions, including the consistency, the convergence rate and the asymptotic distribution. Furthermore, we develop a least squares dummy variable method to study an important special case of the proposed model: the varying coefficient panel data model with additive fixed effects. To construct the pointwise confidence intervals for the coefficient functions, a residual-based block bootstrap method is proposed to reduce the computational burden as well as to avoid the accumulative errors. Simulation studies and a real data analysis are also carried out to assess the performance of our proposed methods.
Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which include logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer of incidental parameter bias. We show how models with factor structures can also be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.