The Leray transform: factorization, dual $CR$ structures and model hypersurfaces in $mathbb{C}mathbb{P}^2$


Abstract in English

We compute the exact norms of the Leray transforms for a family $mathcal{S}_{beta}$ of unbounded hypersurfaces in two complex dimensions. The $mathcal{S}_{beta}$ generalize the Heisenberg group, and provide local projective approximations to any smooth, strongly $mathbb{C}$-convex hypersurface $mathcal{S}_{beta}$ to two orders of tangency. This work is then examined in the context of projective dual $CR$-structures and the corresponding pair of canonical dual Hardy spaces associated to $mathcal{S}_{beta}$, leading to a universal description of the Leray transform and a factorization of the transform through orthogonal projection onto the conjugate dual Hardy space.

Download