Do you want to publish a course? Click here

The complex morphology of the young disk MWC 758: Spirals and dust clumps around a large cavity

103   0   0.0 ( 0 )
 Added by Yann Boehler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Atacama Large Millimeter Array (ALMA) observations at an angular resolution of 0.1-0.2 of the disk surrounding the young Herbig Ae star MWC 758. The data consist of images of the dust continuum emission recorded at 0.88 millimeter, as well as images of the 13CO and C18O J = 3-2 emission lines. The dust continuum emission is characterized by a large cavity of roughly 40 au in radius which might contain a mildly inner warped disk. The outer disk features two bright emission clumps at radii of about 47 and 82 au that present azimuthal extensions and form a double-ring structure. The comparison with radiative transfer models indicates that these two maxima of emission correspond to local increases in the dust surface density of about a factor 2.5 and 6.5 for the south and north clumps, respectively. The optically thick 13CO peak emission, which traces the temperature, and the dust continuum emission, which probes the disk midplane, additionally reveal two spirals previously detected in near-IR at the disk surface. The spirals seen in the dust continuum emission present, however, a slight shift of a few au towards larger radii and one of the spirals crosses the south dust clump. Finally, we present different scenarios in order to explain the complex structure of the disk.



rate research

Read More

Spatially resolved structures in protoplanetary disks hint at unseen planets. Previous imaging observations of the transitional disk around MWC 758 revealed an inner cavity, a ring-like outer disk, emission clumps, and spiral arms, all possibly generated by companions. We present ALMA dust continuum observations of MWC 758 at 0.87 millimeter (mm) wavelength with 43$times$39 mas angular resolution (6.9$times$6.2 AU) and 20 $mu$Jy beam$^{-1}$ rms. The central sub-mm emission cavity is revealed to be eccentric; once deprojected, its outer edge can be well-fitted by an ellipse with an eccentricity of 0.1 and one focus on the star. The broad ring-like outer disk is resolved into three narrow rings with two gaps in between. The outer two rings tentatively show the same eccentricity and orientation as the innermost ring bounding the inner cavity. The two previously known dust emission clumps are resolved in both the radial and azimuthal directions, with radial widths equal to $sim$4$times$ the local scale height. Only one of the two spiral arms previously imaged in near-infrared (NIR) scattered light is revealed in ALMA dust emission, at a slightly larger stellocentric distance owing to projection effects. We also submit evidence of disk truncation at $sim$100 AU based on comparing NIR imaging observations with models. The spirals, the north clump, and the truncated disk edge are all broadly consistent with the presence of one companion exterior to the spirals at roughly 100 AU.
229 - S. Marino , S. Casassus , S. Perez 2015
The formation of planetesimals requires that primordial dust grains grow from micron- to km-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka & Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensity maximum to the north-west of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a non-axisymmetric parametric model inspired by a steady state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarised emission. Continuum observations at a different wavelength are necessary to conclude if the VLA-ALMA difference is an opacity or a real dust segregation.
Transition disks offer the extraordinary opportunity to look for newly born planets and investigate the early stages of planet formation. In this context we observed the Herbig A5 star MWC 758 with the L band vector vortex coronagraph installed in the near-infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Our high-contrast imaging observations show a bright (delta L=7.0+/-0.3 mag) point-like emission, south of MWC 758 at a deprojected separation of about 20 au (r=0.111+/- 0. 004 arcsec) from the central star. We also recover the two spiral arms (south-east and north-west), already imaged by previous studies in polarized light, and discover a third one to the south-west of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.6 arcsec from the star. We propose that the bright L band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms.
More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses -- companion-disk interaction and gravitational instability (GI) -- predict distinct motion for spirals. By imaging the MWC 758 spiral arm system at two epochs spanning ${sim}5$ yr using the SPHERE instrument on the Very Large Telescope (VLT), we test the two hypotheses for the first time. We find that the pattern speeds of the spirals are not consistent with the GI origin. Our measurements further evince the existence of a faint missing planet driving the disk arms. The average spiral pattern speed is $0.!^circ22pm0.!^circ03$ yr$^{-1}$, pointing to a driver at $172_{-14}^{+18}$ au around a $1.9$ $M_odot$ central star if it is on a circular orbit. In addition, we witness time varying shadowing effects on a global scale that are likely originated from an inner disk.
111 - A. Isella , E. Tatulli , A. Natta 2008
In this Letter we investigate the origin of the near-infrared emission of the Herbig Ae star MWC 758 on sub-astronomical unit (AU) scales using spectrally dispersed low resolution (R=35) AMBER/VLTI interferometric observations both in the H ($1.7 mu$m) and K ($2.2 mu$m) bands. We find that the K band visibilities and closure phases are consistent with the presence of a dusty disk inner rim located at the dust evaporation distance (0.4 AU) while the bulk of the H band emission arises within 0.1 AU from the central star. Comparing the observational results with theoretical model predictions, we suggest that the H band emission is dominated by an hot gaseous accretion disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا